A New Attribute-Based Access Control Model for RDBMS

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Cybernetics and Information Technologies Pub Date : 2022-11-01 DOI:10.2478/cait-2022-0036
J. Al-Saraireh, Majid Hassan
{"title":"A New Attribute-Based Access Control Model for RDBMS","authors":"J. Al-Saraireh, Majid Hassan","doi":"10.2478/cait-2022-0036","DOIUrl":null,"url":null,"abstract":"Abstract One of the challenges in Attribute-Based Access Control (ABAC) implementation is acquiring sufficient metadata against entities and attributes. Intelligent mining and extracting ABAC policies and attributes make ABAC implementation more feasible and cost-effective. This research paper focuses on attribute extraction from an existing enterprise relational database management system – RDBMS. The proposed approach tends to first classify entities according to some aspects of RDBMS systems. By reverse engineering, some metadata elements and ranking values are calculated for each part. Then entities and attributes are assigned a final rank that helps to decide what attribute subset is a candidate to be an optimal input for ABAC implementation. The proposed approach has been tested and implemented against an existing enterprise RDBMS, and the results are then evaluated. The approach enables the choice to trade-off between accuracy and overhead. The results score an accuracy of up to 80% with no overhead or 88% of accuracy with 65% overhead.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2022-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract One of the challenges in Attribute-Based Access Control (ABAC) implementation is acquiring sufficient metadata against entities and attributes. Intelligent mining and extracting ABAC policies and attributes make ABAC implementation more feasible and cost-effective. This research paper focuses on attribute extraction from an existing enterprise relational database management system – RDBMS. The proposed approach tends to first classify entities according to some aspects of RDBMS systems. By reverse engineering, some metadata elements and ranking values are calculated for each part. Then entities and attributes are assigned a final rank that helps to decide what attribute subset is a candidate to be an optimal input for ABAC implementation. The proposed approach has been tested and implemented against an existing enterprise RDBMS, and the results are then evaluated. The approach enables the choice to trade-off between accuracy and overhead. The results score an accuracy of up to 80% with no overhead or 88% of accuracy with 65% overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的基于属性的RDBMS访问控制模型
摘要基于属性的访问控制(ABAC)实现面临的挑战之一是针对实体和属性获取足够的元数据。智能挖掘和提取ABAC策略和属性使ABAC实现更加可行和经济高效。本文主要研究从现有的企业关系数据库管理系统RDBMS中提取属性。所提出的方法倾向于首先根据RDBMS系统的某些方面对实体进行分类。通过逆向工程,为每个部分计算一些元数据元素和排名值。然后,实体和属性被分配一个最终排名,这有助于决定哪个属性子集是ABAC实现的最佳输入。所提出的方法已经在现有的企业RDBMS上进行了测试和实现,然后对结果进行了评估。该方法允许在准确性和开销之间进行权衡。结果在没有开销的情况下准确率高达80%,在开销为65%的情况下,准确率为88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
A Review on State-of-Art Blockchain Schemes for Electronic Health Records Management Degradation Recoloring Deutan CVD Image from Block SVD Watermark Integration Approaches for Heterogeneous Big Data: A Survey Efficient DenseNet Model with Fusion of Channel and Spatial Attention for Facial Expression Recognition Hybrid Edge Detection Methods in Image Steganography for High Embedding Capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1