{"title":"Numerical treatment of temporal-fractional porous medium model occurring in fractured media","authors":"R. Meher , J. Kesarwani , Z. Avazzadeh , O. Nikan","doi":"10.1016/j.joes.2022.02.016","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a temporal-fractional porous medium model (T-FPMM) for describing the co-current and counter-current imbibition, which arises in a water-wet fractured porous media. The correlation between the co-current and counter-current imbibition for the fractures and porous matrix are examined to determine the saturation and recovery rate of the reservoir. For different fractional orders in both porous matrix and fractured porous media, the homotopy analysis technique and its stability analysis are used to explore the parametric behavior of the saturation and recovery rates. Finally, the effects of wettability and inclination on the recovery rate and saturation are studied for distinct fractional values.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocean Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468013322000493","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 3
Abstract
This paper proposes a temporal-fractional porous medium model (T-FPMM) for describing the co-current and counter-current imbibition, which arises in a water-wet fractured porous media. The correlation between the co-current and counter-current imbibition for the fractures and porous matrix are examined to determine the saturation and recovery rate of the reservoir. For different fractional orders in both porous matrix and fractured porous media, the homotopy analysis technique and its stability analysis are used to explore the parametric behavior of the saturation and recovery rates. Finally, the effects of wettability and inclination on the recovery rate and saturation are studied for distinct fractional values.
期刊介绍:
The Journal of Ocean Engineering and Science (JOES) serves as a platform for disseminating original research and advancements in the realm of ocean engineering and science.
JOES encourages the submission of papers covering various aspects of ocean engineering and science.