A.M. Kolagar, N. Tabrizi, M. Cheraghzadeh, M.S. Shahriari
{"title":"Failure analysis of gas turbine first stage blade made of nickel-based superalloy","authors":"A.M. Kolagar, N. Tabrizi, M. Cheraghzadeh, M.S. Shahriari","doi":"10.1016/j.csefa.2017.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>Various degradation mechanisms are characterized in gas turbine rotor blades due to service conditions such as: high temperature and stress. Failure of turbine blade can have the tremendous effects on the safety and performance of the gas turbine engine. This paper investigates a first stage turbine blade failure in a 6.5<!--> <!-->MW gas turbine. The blade is made of nickel-based superalloy, and the failure occurred in the airfoils after 6500<!--> <!-->h of operation. Several examinations were carried out in order to identify potential failure reasons such as: visual examination, fractography and microstructural characterization used by optical and scanning electron microscopes (SEM) and energy dispersive X-ray (EDX). The precipitated phases morphology (carbides and γ′ (Ni3Al)) changed in the airfoil for example γ′ resolved and re-deposited in addition to decomposition of carbides. Furthermore, the fracture surface exhibits the local melting occurred and re-solidified in the leading edge. From analysis and experimental results of this study, overheating is shown to be the main reason of blade failure.</p></div>","PeriodicalId":91224,"journal":{"name":"Case studies in engineering failure analysis","volume":"8 ","pages":"Pages 61-68"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csefa.2017.04.002","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case studies in engineering failure analysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213290217300093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50
Abstract
Various degradation mechanisms are characterized in gas turbine rotor blades due to service conditions such as: high temperature and stress. Failure of turbine blade can have the tremendous effects on the safety and performance of the gas turbine engine. This paper investigates a first stage turbine blade failure in a 6.5 MW gas turbine. The blade is made of nickel-based superalloy, and the failure occurred in the airfoils after 6500 h of operation. Several examinations were carried out in order to identify potential failure reasons such as: visual examination, fractography and microstructural characterization used by optical and scanning electron microscopes (SEM) and energy dispersive X-ray (EDX). The precipitated phases morphology (carbides and γ′ (Ni3Al)) changed in the airfoil for example γ′ resolved and re-deposited in addition to decomposition of carbides. Furthermore, the fracture surface exhibits the local melting occurred and re-solidified in the leading edge. From analysis and experimental results of this study, overheating is shown to be the main reason of blade failure.