EEG decoding for effects of visual joint attention training on ASD patients with interpretable and lightweight convolutional neural network.

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-06-01 Epub Date: 2023-03-07 DOI:10.1007/s11571-023-09947-x
Jianling Tan, Yichao Zhan, Yi Tang, Weixin Bao, Yin Tian
{"title":"EEG decoding for effects of visual joint attention training on ASD patients with interpretable and lightweight convolutional neural network.","authors":"Jianling Tan, Yichao Zhan, Yi Tang, Weixin Bao, Yin Tian","doi":"10.1007/s11571-023-09947-x","DOIUrl":null,"url":null,"abstract":"<p><p>Visual joint attention, the ability to track gaze and recognize intent, plays a key role in the development of social and language skills in health humans, which is performed abnormally hard in autism spectrum disorder (ASD). The traditional convolutional neural network, EEGnet, is an effective model for decoding technology, but few studies have utilized this model to address attentional training in ASD patients. In this study, EEGNet was used to decode the P300 signal elicited by training and the saliency map method was used to visualize the cognitive properties of ASD patients during visual attention. The results showed that in the spatial distribution, the parietal lobe was the main region of classification contribution, especially for Pz electrode. In the temporal information, the time period from 300 to 500 ms produced the greatest contribution to the electroencephalogram (EEG) classification, especially around 300 ms. After training for ASD patients, the gradient contribution was significantly enhanced at 300 ms, which was effective only in social scenarios. Meanwhile, with the increase of joint attention training, the P300 latency of ASD patients gradually shifted forward in social scenarios, but this phenomenon was not obvious in non-social scenarios. Our results indicated that joint attention training could improve the cognitive ability and responsiveness of social characteristics in ASD patients.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"947-960"},"PeriodicalIF":4.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143091/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09947-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Visual joint attention, the ability to track gaze and recognize intent, plays a key role in the development of social and language skills in health humans, which is performed abnormally hard in autism spectrum disorder (ASD). The traditional convolutional neural network, EEGnet, is an effective model for decoding technology, but few studies have utilized this model to address attentional training in ASD patients. In this study, EEGNet was used to decode the P300 signal elicited by training and the saliency map method was used to visualize the cognitive properties of ASD patients during visual attention. The results showed that in the spatial distribution, the parietal lobe was the main region of classification contribution, especially for Pz electrode. In the temporal information, the time period from 300 to 500 ms produced the greatest contribution to the electroencephalogram (EEG) classification, especially around 300 ms. After training for ASD patients, the gradient contribution was significantly enhanced at 300 ms, which was effective only in social scenarios. Meanwhile, with the increase of joint attention training, the P300 latency of ASD patients gradually shifted forward in social scenarios, but this phenomenon was not obvious in non-social scenarios. Our results indicated that joint attention training could improve the cognitive ability and responsiveness of social characteristics in ASD patients.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用可解释和轻量级卷积神经网络对ASD患者视觉联合注意训练的脑电图解码效果
视觉联合注意,即跟踪注视和识别意图的能力,在健康人的社交和语言技能发展中起着关键作用,而自闭症谱系障碍(ASD)患者的这种能力表现异常困难。传统的卷积神经网络 EEGnet 是一种有效的解码技术模型,但很少有研究利用这种模型来解决 ASD 患者的注意力训练问题。本研究利用 EEGNet 对训练引起的 P300 信号进行解码,并采用显著性图谱法对 ASD 患者在视觉注意过程中的认知特性进行可视化分析。结果显示,在空间分布上,顶叶是分类贡献的主要区域,尤其是Pz电极。在时间信息方面,300 至 500 毫秒的时间段对脑电图(EEG)分类的贡献最大,尤其是在 300 毫秒左右。对 ASD 患者进行训练后,梯度贡献在 300 毫秒处明显增强,仅在社交场景中有效。同时,随着联合注意训练的增加,ASD患者的P300潜伏期在社交场景中逐渐前移,但这一现象在非社交场景中并不明显。我们的研究结果表明,联合注意训练可以提高ASD患者的认知能力和对社会特征的反应能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
期刊最新文献
Issue Publication Information Issue Editorial Masthead Corroborating the Monro-Kellie Principles. High-Performance Flexible Strain Sensor Enhanced by Functionally Partitioned Conductive Network for Intelligent Monitoring of Human Activities Carbon Nanotube-Enhanced Liquid Metal Composite Ink for Strain Sensing and Digital Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1