σ-dominated charge transport in sub-nanometer molecular junctions

IF 6.2 3区 综合性期刊 Q1 Multidisciplinary Fundamental Research Pub Date : 2024-09-01 DOI:10.1016/j.fmre.2022.06.021
{"title":"σ-dominated charge transport in sub-nanometer molecular junctions","authors":"","doi":"10.1016/j.fmre.2022.06.021","DOIUrl":null,"url":null,"abstract":"<div><div>Quantum tunneling conductance of molecular junctions originates from the charge transport through the π-orbitals (π-transport) and the σ-orbitals (σ-transport) of the molecules, but the σ-transport can not be observed due to the more rapid decay of the tunneling conductance in the σ-system compared to that in the π-system. Here, we demonstrate that dominant σ-transport can be observed in π-conjugated molecular junctions at the sub-nanometer scale using the scanning tunneling microscope break junction technique (STM-BJ). We have found that the conductance of <em>meta</em>-connected picolinic acid, which mainly occurs by σ-transport, is ∼35 times higher than that of its <em>para</em>-isomer, which is entirely different from what is expected from π-transport through these systems. Flicker noise analysis reveals that the transport through the <em>meta</em>-connection exhibits more through-bond transport than the <em>para</em>-counterpart and density functional theory (DFT) shows that the σ-system provides the dominant transport path. These results reveal that the σ-electrons, rather than the π-electrons, can dominate charge transport through conjugated molecular junctions at the sub-nanometer scale, and this provides a new avenue toward the future miniaturization of molecular devices and materials.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 5","pages":"Pages 1128-1136"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325822003028","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum tunneling conductance of molecular junctions originates from the charge transport through the π-orbitals (π-transport) and the σ-orbitals (σ-transport) of the molecules, but the σ-transport can not be observed due to the more rapid decay of the tunneling conductance in the σ-system compared to that in the π-system. Here, we demonstrate that dominant σ-transport can be observed in π-conjugated molecular junctions at the sub-nanometer scale using the scanning tunneling microscope break junction technique (STM-BJ). We have found that the conductance of meta-connected picolinic acid, which mainly occurs by σ-transport, is ∼35 times higher than that of its para-isomer, which is entirely different from what is expected from π-transport through these systems. Flicker noise analysis reveals that the transport through the meta-connection exhibits more through-bond transport than the para-counterpart and density functional theory (DFT) shows that the σ-system provides the dominant transport path. These results reveal that the σ-electrons, rather than the π-electrons, can dominate charge transport through conjugated molecular junctions at the sub-nanometer scale, and this provides a new avenue toward the future miniaturization of molecular devices and materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
亚纳米分子结中σ主导的电荷输运
分子结的量子隧穿电导源于通过分子的π轨道(π-transport)和σ轨道(σ-transport)的电荷传输,但由于σ系统中的隧穿电导比π系统中的隧穿电导衰减得更快,因此无法观察到σ-transport。在这里,我们利用扫描隧道显微镜断裂结技术(STM-BJ)证明,在亚纳米尺度的π共轭分子结中可以观察到占主导地位的σ传输。我们发现,主要通过σ传输发生的元连接吡啶甲酸的电导率是其对位异构体的 35 倍,这与通过这些系统的π传输的预期完全不同。闪烁噪声分析表明,通过元连接的传输比通过对位异构体的传输表现出更多的通键传输,而密度泛函理论(DFT)表明,σ-系统提供了主要的传输路径。这些结果表明,在亚纳米尺度上,σ电子而不是π电子可以主导通过共轭分子结的电荷传输,这为未来实现分子器件和材料的微型化提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
期刊最新文献
Solute-solvent dual engineering toward versatile electrolyte for high-voltage aqueous zinc-based energy storage devices Prediction of novel tetravalent metal pentazolate salts with anharmonic effect Gene therapy as an emerging treatment for Scn2a mutation-induced autism spectrum disorders Peltier cell calorimetry “as an option” for commonplace cryostats: Application to the case of MnFe(P,Si,B) magnetocaloric materials Digitalized analog integrated circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1