{"title":"σ-dominated charge transport in sub-nanometer molecular junctions","authors":"","doi":"10.1016/j.fmre.2022.06.021","DOIUrl":null,"url":null,"abstract":"<div><div>Quantum tunneling conductance of molecular junctions originates from the charge transport through the π-orbitals (π-transport) and the σ-orbitals (σ-transport) of the molecules, but the σ-transport can not be observed due to the more rapid decay of the tunneling conductance in the σ-system compared to that in the π-system. Here, we demonstrate that dominant σ-transport can be observed in π-conjugated molecular junctions at the sub-nanometer scale using the scanning tunneling microscope break junction technique (STM-BJ). We have found that the conductance of <em>meta</em>-connected picolinic acid, which mainly occurs by σ-transport, is ∼35 times higher than that of its <em>para</em>-isomer, which is entirely different from what is expected from π-transport through these systems. Flicker noise analysis reveals that the transport through the <em>meta</em>-connection exhibits more through-bond transport than the <em>para</em>-counterpart and density functional theory (DFT) shows that the σ-system provides the dominant transport path. These results reveal that the σ-electrons, rather than the π-electrons, can dominate charge transport through conjugated molecular junctions at the sub-nanometer scale, and this provides a new avenue toward the future miniaturization of molecular devices and materials.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 5","pages":"Pages 1128-1136"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325822003028","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum tunneling conductance of molecular junctions originates from the charge transport through the π-orbitals (π-transport) and the σ-orbitals (σ-transport) of the molecules, but the σ-transport can not be observed due to the more rapid decay of the tunneling conductance in the σ-system compared to that in the π-system. Here, we demonstrate that dominant σ-transport can be observed in π-conjugated molecular junctions at the sub-nanometer scale using the scanning tunneling microscope break junction technique (STM-BJ). We have found that the conductance of meta-connected picolinic acid, which mainly occurs by σ-transport, is ∼35 times higher than that of its para-isomer, which is entirely different from what is expected from π-transport through these systems. Flicker noise analysis reveals that the transport through the meta-connection exhibits more through-bond transport than the para-counterpart and density functional theory (DFT) shows that the σ-system provides the dominant transport path. These results reveal that the σ-electrons, rather than the π-electrons, can dominate charge transport through conjugated molecular junctions at the sub-nanometer scale, and this provides a new avenue toward the future miniaturization of molecular devices and materials.