Jon Martin Fordal, Per Schjølberg, Hallvard Helgetun, Tor Øistein Skjermo, Yi Wang, Chen Wang
{"title":"Application of sensor data based predictive maintenance and artificial neural networks to enable Industry 4.0","authors":"Jon Martin Fordal, Per Schjølberg, Hallvard Helgetun, Tor Øistein Skjermo, Yi Wang, Chen Wang","doi":"10.1007/s40436-022-00433-x","DOIUrl":null,"url":null,"abstract":"<div><p>\nPossessing an efficient production line relies heavily on the availability of the production equipment. Thus, to ensure that the required function for critical equipment is in compliance, and unplanned downtime is minimized, succeeding with the field of maintenance is essential for industrialists. With the emergence of advanced manufacturing processes, incorporating predictive maintenance capabilities is seen as a necessity. Another field of interest is how modern value chains can support the maintenance function in a company. Accessibility to data from processes, equipment and products have increased significantly with the introduction of sensors and Industry 4.0 technologies. However, how to gather and utilize these data for enabling improved decision making within maintenance and value chain is still a challenge. Thus, the aim of this paper is to investigate on how maintenance and value chain data can collectively be used to improve value chain performance through prediction. The research approach includes both theoretical testing and industrial testing. The paper presents a novel concept for a predictive maintenance platform, and an artificial neural network (ANN) model with sensor data input. Further, a case of a company that has chosen to apply the platform, with the implications and determinants of this decision, is also provided. Results show that the platform can be used as an entry-level solution to enable Industry 4.0 and sensor data based predictive maintenance.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"11 2","pages":"248 - 263"},"PeriodicalIF":4.2000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40436-022-00433-x.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-022-00433-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 2
Abstract
Possessing an efficient production line relies heavily on the availability of the production equipment. Thus, to ensure that the required function for critical equipment is in compliance, and unplanned downtime is minimized, succeeding with the field of maintenance is essential for industrialists. With the emergence of advanced manufacturing processes, incorporating predictive maintenance capabilities is seen as a necessity. Another field of interest is how modern value chains can support the maintenance function in a company. Accessibility to data from processes, equipment and products have increased significantly with the introduction of sensors and Industry 4.0 technologies. However, how to gather and utilize these data for enabling improved decision making within maintenance and value chain is still a challenge. Thus, the aim of this paper is to investigate on how maintenance and value chain data can collectively be used to improve value chain performance through prediction. The research approach includes both theoretical testing and industrial testing. The paper presents a novel concept for a predictive maintenance platform, and an artificial neural network (ANN) model with sensor data input. Further, a case of a company that has chosen to apply the platform, with the implications and determinants of this decision, is also provided. Results show that the platform can be used as an entry-level solution to enable Industry 4.0 and sensor data based predictive maintenance.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.