Bao Tran Le Tran, T. N. Thi, Ngoc Vo Thi Minh, Trung Le Canh, M. Van, V. C. Long, K. D. Xuan, L. Chu
{"title":"Analysis of dispersion characteristics of solid-core PCFs with different types of lattice in the claddings, infiltrated with ethanol","authors":"Bao Tran Le Tran, T. N. Thi, Ngoc Vo Thi Minh, Trung Le Canh, M. Van, V. C. Long, K. D. Xuan, L. Chu","doi":"10.4302/PLP.V12I4.1054","DOIUrl":null,"url":null,"abstract":"In this paper, we propose three solid-core photonic crystal fibers based on silica, with hexagonal, circular and square lattices as a cladding, composed of 8 rings of air-holes surrounding the core, infiltrated with ethanol. Using a commercial software we simulated the light propagation in these structures. The size of the air-holes was from 1 µm to 4 µm. We have shown that the fibers with the hexagonal lattices are optimal for supercontinuum generation since their dispersion characteristics are flat and the smallest.","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/PLP.V12I4.1054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 12
Abstract
In this paper, we propose three solid-core photonic crystal fibers based on silica, with hexagonal, circular and square lattices as a cladding, composed of 8 rings of air-holes surrounding the core, infiltrated with ethanol. Using a commercial software we simulated the light propagation in these structures. The size of the air-holes was from 1 µm to 4 µm. We have shown that the fibers with the hexagonal lattices are optimal for supercontinuum generation since their dispersion characteristics are flat and the smallest.