Short to medium range impact based forecasting of heavy rainfall in India

IF 0.7 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES MAUSAM Pub Date : 2023-03-29 DOI:10.54302/mausam.v74i2.6180
M. Mohapatra, Anshul Chauhan, Avnish Varshney, Suman Gurjar, M. Bushair, M. Sharma, RK Jenamani, K. Srivastava, P. Guhathakurta, R. Chattopadhyay, Mamta Yadav, Radheshyam Sharma, AK Mitra, Ananda KumarDas, S. Nath, Naresh Kumar, S. Senroy, T. Arulalan, Amit Bharadwaj, D. Pattanaik, BP Yadav, R. Saxena, Ashok KumarDas, Asok Raja, B. Hemlata, Kvh Arun, S. Nitha, Atul KSingh, Shobhit Katiyar, K. Mishra, Surendra PratapSingh, Shashikant Mishra, A. Srivastava, B. Geetha, M. Rahul, K. Nagaratna, H. Biswas, M. Mohanty, R. Thapliyal, Shivinder Singh, S. Lotus, Sandeep KumarSharma, V. Mini, S. Das, Gk Das, A. Anand, Gayatri KVani
{"title":"Short to medium range impact based forecasting of heavy rainfall in India","authors":"M. Mohapatra, Anshul Chauhan, Avnish Varshney, Suman Gurjar, M. Bushair, M. Sharma, RK Jenamani, K. Srivastava, P. Guhathakurta, R. Chattopadhyay, Mamta Yadav, Radheshyam Sharma, AK Mitra, Ananda KumarDas, S. Nath, Naresh Kumar, S. Senroy, T. Arulalan, Amit Bharadwaj, D. Pattanaik, BP Yadav, R. Saxena, Ashok KumarDas, Asok Raja, B. Hemlata, Kvh Arun, S. Nitha, Atul KSingh, Shobhit Katiyar, K. Mishra, Surendra PratapSingh, Shashikant Mishra, A. Srivastava, B. Geetha, M. Rahul, K. Nagaratna, H. Biswas, M. Mohanty, R. Thapliyal, Shivinder Singh, S. Lotus, Sandeep KumarSharma, V. Mini, S. Das, Gk Das, A. Anand, Gayatri KVani","doi":"10.54302/mausam.v74i2.6180","DOIUrl":null,"url":null,"abstract":"There have been major advances in the last few decades in our understanding of heavy rainfall during monsoon season due to substantial progress in both observation and numerical modelling of monsoon. All these resulted in more accurate forecast of heavy rainfall in short to medium range, (upto five days) with 40% improvement in accuracy of heavy rainfall forecast in recent five years (2018-2022) as compared to previous five years. However, improvement of forecast and warning skill is not sufficient to minimize damage to lives and property. It is essential to extend to hazard forecast systems (hazard models) and then to impact and risk assessment with stakeholder interaction for risk based warning (RBW) and response action to protect lives and livelihoods\n \nConsidering all these, India Meteorological Department (IMD) has introduced impact based forecast (IBF) for heavy rainfall at meteorological sub-division level since July 2013 and at district and city scale in August, 2019 in its short to medium range forecasts and nowcasts indicating the likely impact of the heavy rainfall in different sectors and required response actions. Thereafter the IBF of heavy rainfall has undergone several changes over the years. Currently, the IBF being implemented by IMD includes all the four components, viz., (i) meteorological hazards, (ii) geophysical hazards, (iii) geospatial applications and (iv) socio-economic conditions and it utilises a web-GIS based decision support system (DSS). In this study we have reviewed various approaches and stages of development of IBF of heavy rainfall in India. The success of IBF of heavy rainfall will enhance the management of critical resources like agriculture, water & power and support urban and disaster management sectors among others while reducing loss of life and property.","PeriodicalId":18363,"journal":{"name":"MAUSAM","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAUSAM","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.54302/mausam.v74i2.6180","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

There have been major advances in the last few decades in our understanding of heavy rainfall during monsoon season due to substantial progress in both observation and numerical modelling of monsoon. All these resulted in more accurate forecast of heavy rainfall in short to medium range, (upto five days) with 40% improvement in accuracy of heavy rainfall forecast in recent five years (2018-2022) as compared to previous five years. However, improvement of forecast and warning skill is not sufficient to minimize damage to lives and property. It is essential to extend to hazard forecast systems (hazard models) and then to impact and risk assessment with stakeholder interaction for risk based warning (RBW) and response action to protect lives and livelihoods   Considering all these, India Meteorological Department (IMD) has introduced impact based forecast (IBF) for heavy rainfall at meteorological sub-division level since July 2013 and at district and city scale in August, 2019 in its short to medium range forecasts and nowcasts indicating the likely impact of the heavy rainfall in different sectors and required response actions. Thereafter the IBF of heavy rainfall has undergone several changes over the years. Currently, the IBF being implemented by IMD includes all the four components, viz., (i) meteorological hazards, (ii) geophysical hazards, (iii) geospatial applications and (iv) socio-economic conditions and it utilises a web-GIS based decision support system (DSS). In this study we have reviewed various approaches and stages of development of IBF of heavy rainfall in India. The success of IBF of heavy rainfall will enhance the management of critical resources like agriculture, water & power and support urban and disaster management sectors among others while reducing loss of life and property.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于中短期影响的印度强降雨预报
在过去的几十年里,由于季风观测和数值模拟的重大进展,我们对季风季节强降雨的认识取得了重大进展。所有这些都使中短期(5天以内)强降雨预报更加准确,近5年(2018-2022年)强降雨预报精度比前5年提高了40%。然而,预报和预警技术的提高不足以减少对生命和财产的损失。必须扩展到灾害预报系统(灾害模型),然后扩展到影响和风险评估,与利益相关者互动,以进行基于风险的预警(RBW)和响应行动,以保护生命和生计。考虑到所有这些,印度气象部门(IMD)自2013年7月以来在气象分部级别引入了基于影响的暴雨预报(IBF),并于8月在区和城市规模引入了基于影响的暴雨预报(IBF)。2019年的中短期预报和临近预报,指出强降雨可能对不同部门产生的影响以及所需的应对行动。此后,暴雨的IBF数年发生了数次变化。目前,气象署推行的IBF包括所有四个组成部分,即(i)气象灾害、(ii)地球物理灾害、(iii)地理空间应用和(iv)社会经济情况,并利用基于网络地理信息系统的决策支持系统。在本研究中,我们回顾了印度暴雨IBF的各种方法和发展阶段。强降雨IBF的成功将加强对农业、水和电力等关键资源的管理,并支持城市和灾害管理部门等,同时减少生命和财产损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MAUSAM
MAUSAM 地学-气象与大气科学
CiteScore
1.20
自引率
0.00%
发文量
1298
审稿时长
6-12 weeks
期刊介绍: MAUSAM (Formerly Indian Journal of Meteorology, Hydrology & Geophysics), established in January 1950, is the quarterly research journal brought out by the India Meteorological Department (IMD). MAUSAM is a medium for publication of original scientific research work. MAUSAM is a premier scientific research journal published in this part of the world in the fields of Meteorology, Hydrology & Geophysics. The four issues appear in January, April, July & October.
期刊最新文献
Precursors of hazard due to super cyclone AMPHAN for Kolkata, India from surface observations Analysis of long-term trends of rainfall and extreme rainfall events over Andaman & Nicobar and Lakshadweep Islands of India Climate drives of growth, yield and microclimate variability in multistoried coconut plantation in Konkan region of Maharashtra, India Accuracy of cumulonimbus cloud prediction using Rapidly Developing Cumulus Area (RDCA) products at Pattimura Ambon airport Markov Chain analysis of rainfall of Coimbatore
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1