CUSUM-Based Monitoring for Explosive Episodes in Financial Data in the Presence of Time-Varying Volatility

IF 1.8 3区 经济学 Q2 BUSINESS, FINANCE Journal of Financial Econometrics Pub Date : 2021-05-05 DOI:10.1093/JJFINEC/NBAB009
Sam Astill, David I. Harvey, S. Leybourne, A. Taylor, Yang Zu
{"title":"CUSUM-Based Monitoring for Explosive Episodes in Financial Data in the Presence of Time-Varying Volatility","authors":"Sam Astill, David I. Harvey, S. Leybourne, A. Taylor, Yang Zu","doi":"10.1093/JJFINEC/NBAB009","DOIUrl":null,"url":null,"abstract":"\n We generalize the Homm and Breitung (2012) CUSUM-based procedure for the real-time detection of explosive autoregressive episodes in financial price data to allow for time-varying volatility. Such behavior can heavily inflate the false positive rate (FPR) of the CUSUM-based procedure to spuriously signal the presence of an explosive episode. Our modified procedure involves replacing the standard variance estimate in the CUSUM statistics with a nonparametric kernel-based spot variance estimate. We show that the sequence of modified CUSUM statistics has a joint limiting null distribution which is invariant to any time-varying volatility present in the innovations and that this delivers a real-time monitoring procedure whose theoretical FPR is controlled. Simulations show that the modification is effective in controlling the empirical FPR of the procedure, yet sacrifices only a small amount of power to detect explosive episodes, relative to the standard procedure, when the shocks are homoskedastic. An empirical illustration using Bitcoin price data is provided.","PeriodicalId":47596,"journal":{"name":"Journal of Financial Econometrics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/JJFINEC/NBAB009","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 7

Abstract

We generalize the Homm and Breitung (2012) CUSUM-based procedure for the real-time detection of explosive autoregressive episodes in financial price data to allow for time-varying volatility. Such behavior can heavily inflate the false positive rate (FPR) of the CUSUM-based procedure to spuriously signal the presence of an explosive episode. Our modified procedure involves replacing the standard variance estimate in the CUSUM statistics with a nonparametric kernel-based spot variance estimate. We show that the sequence of modified CUSUM statistics has a joint limiting null distribution which is invariant to any time-varying volatility present in the innovations and that this delivers a real-time monitoring procedure whose theoretical FPR is controlled. Simulations show that the modification is effective in controlling the empirical FPR of the procedure, yet sacrifices only a small amount of power to detect explosive episodes, relative to the standard procedure, when the shocks are homoskedastic. An empirical illustration using Bitcoin price data is provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于cusum的时变波动金融数据爆炸事件监测
我们推广了Homm和Breitung(2012)基于cusum的程序,用于实时检测金融价格数据中的爆炸性自回归事件,以允许时变波动。这种行为会严重提高基于cusum的程序的假阳性率(FPR),从而虚假地发出爆炸事件的信号。我们修改的程序包括用基于非参数核的点方差估计替换CUSUM统计中的标准方差估计。我们表明,修改的CUSUM统计序列具有联合限制零分布,该分布对创新中存在的任何时变波动都是不变的,并且这提供了一个实时监控过程,其理论FPR是可控的。仿真结果表明,该改进方法在控制经验FPR过程中是有效的,但相对于标准程序,当冲击为等方差时,仅牺牲少量的功率来检测爆炸事件。使用比特币价格数据提供了一个实证说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
8.00%
发文量
39
期刊介绍: "The Journal of Financial Econometrics is well situated to become the premier journal in its field. It has started with an excellent first year and I expect many more."
期刊最新文献
Large-Dimensional Portfolio Selection with a High-Frequency-Based Dynamic Factor Model Exploiting Intraday Decompositions in Realized Volatility Forecasting: A Forecast Reconciliation Approach A Structural Break in the Aggregate Earnings–Returns Relation Large Sample Estimators of the Stochastic Discount Factor Jump Clustering, Information Flows, and Stock Price Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1