Gravity Augmented Fused Filament Fabrication Additive Manufacturing

IF 0.8 4区 医学 Q4 ENGINEERING, BIOMEDICAL Journal of Medical Devices-Transactions of the Asme Pub Date : 2023-02-16 DOI:10.1115/1.4056909
J. Huss, A. Erdman
{"title":"Gravity Augmented Fused Filament Fabrication Additive Manufacturing","authors":"J. Huss, A. Erdman","doi":"10.1115/1.4056909","DOIUrl":null,"url":null,"abstract":"\n This article introduces the design, methods, and use cases of a novel Gravity Augmented Additive Manufacturing (GAAM) approach to Fused Filament Fabrication (FFF) using a novel seven degree of freedom (DoF) delta robotic system. Capable of rotating parts and approaching the workpiece with the deposition head from user-specified or algorithm-determined angles, this system allows users the design freedom to create objects using less support material, while improving the performance of 3D printed components. Not only is time saved by reducing (or eliminating) support material, but components may be able to resist higher loading. Additionally, this system and the methods of operation described below allow users to create objects that are otherwise impossible or impractical to construct using traditional three axis FFF 3D printing, while maintaining compatibility with existing G-code preparation techniques. Finally, this more flexible 3D printing system has advanced applications in generating patient specific objects, which may benefit from more highly specialized toolpaths and design freedom afforded by this system.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056909","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

Abstract

This article introduces the design, methods, and use cases of a novel Gravity Augmented Additive Manufacturing (GAAM) approach to Fused Filament Fabrication (FFF) using a novel seven degree of freedom (DoF) delta robotic system. Capable of rotating parts and approaching the workpiece with the deposition head from user-specified or algorithm-determined angles, this system allows users the design freedom to create objects using less support material, while improving the performance of 3D printed components. Not only is time saved by reducing (or eliminating) support material, but components may be able to resist higher loading. Additionally, this system and the methods of operation described below allow users to create objects that are otherwise impossible or impractical to construct using traditional three axis FFF 3D printing, while maintaining compatibility with existing G-code preparation techniques. Finally, this more flexible 3D printing system has advanced applications in generating patient specific objects, which may benefit from more highly specialized toolpaths and design freedom afforded by this system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重力增强熔丝制造增材制造
本文介绍了一种新型的重力增强增材制造(GAAM)方法的设计、方法和用例,该方法使用一种新型七自由度(DoF)德尔塔机器人系统来制造熔融丝(FFF)。该系统能够旋转零件,并使用沉积头从用户指定或算法确定的角度接近工件,使用户可以自由设计,使用更少的支撑材料创建物体,同时提高3D打印组件的性能。通过减少(或消除)支撑材料不仅节省了时间,而且组件可以抵抗更高的负载。此外,该系统和下面描述的操作方法允许用户创建使用传统的三轴FFF 3D打印不可能或不切实际的对象,同时保持与现有G码准备技术的兼容性。最后,这种更灵活的3D打印系统在生成患者特定对象方面具有先进的应用,这可能受益于该系统提供的更高度专业化的工具路径和设计自由度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
11.10%
发文量
56
审稿时长
6-12 weeks
期刊介绍: The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.
期刊最新文献
A Novel Design Method for the Knee Joint of the Exoskeleton Based On the Modular Wearable Sensor Experimental Investigation of the Calcified Plaque Material Removal Rate in Coronary Rotational Atherectomy Assessment of a Novel Application of the Capture-Trap-Terminate Approach for Treating Aerosol Products During Dental Procedures Development And Mechanical Testing Of Implant For Cranial Reconstruction After Burr Hole Trepanation In Vitro Thrombogenicity Testing of Biomaterials in a Dynamic Flow Loop: Effects of Length and Quantity of Test Samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1