{"title":"On the application of non-uniform water cooling for the fire safety of fuel storage tank farms","authors":"A. Saber, M. Abo El-Nasr, A. Elbanhawy","doi":"10.1177/07349041211072534","DOIUrl":null,"url":null,"abstract":"Compromising between application rate and spacing between tanks is one of the vague points regarding fire mitigation in hydrocarbon storage tanks. Codes and standards recommendations are not comprehensive and sometimes contradicting. The traditional, uniform, coolant application technique requires high storage capacities and over-consumes the coolant. This study investigates a non-traditional technique using non-uniform coolant distribution and illustrates the effect of this technique on coolant and land savings. A model is created to simulate fire propagation and mitigation through cooling water application under steady state conditions for surface pool fires in cylindrical hydrocarbon storage tanks. The model considers the types of fuel, the wind speed and direction, the smoke effect and the nozzles distribution, and the number of segments on the target tank surface. The model is applied on a real-life case study. The suggested technique achieved up to 30% reduction in cooling water consumption or 5.6% reduction in land area.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":"40 1","pages":"115 - 133"},"PeriodicalIF":1.9000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041211072534","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Compromising between application rate and spacing between tanks is one of the vague points regarding fire mitigation in hydrocarbon storage tanks. Codes and standards recommendations are not comprehensive and sometimes contradicting. The traditional, uniform, coolant application technique requires high storage capacities and over-consumes the coolant. This study investigates a non-traditional technique using non-uniform coolant distribution and illustrates the effect of this technique on coolant and land savings. A model is created to simulate fire propagation and mitigation through cooling water application under steady state conditions for surface pool fires in cylindrical hydrocarbon storage tanks. The model considers the types of fuel, the wind speed and direction, the smoke effect and the nozzles distribution, and the number of segments on the target tank surface. The model is applied on a real-life case study. The suggested technique achieved up to 30% reduction in cooling water consumption or 5.6% reduction in land area.
期刊介绍:
The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).