{"title":"Impact of O2 Content on the Corrosion Behavior of X65 Mild Steel in Gaseous, Liquid and Supercritical CO2 Environments","authors":"Xiu Jiang","doi":"10.5006/4196","DOIUrl":null,"url":null,"abstract":"The CO2 stream in a CCUS application generally includes impurities which could cause internal corrosion of CO2 pipelines. The general and localized corrosion behavior with a variety of O2 concentrations for X65 mild steel both in water-saturated CO2 and CO2-saturated water environments was evaluated using an autoclave. Corrosion tests were performed at 8 MPa and 25 °C, 8 MPa and 35 °C, 4 MPa and 35 °C to simulate the liquid, supercritical and gaseous CO2 transportation. Results indicate that notably higher general corrosion rates were recorded at each O2 concentration in the CO2-saturated water phase than those in the water-saturated CO2 environment. The general corrosion rates did not show gradual rise at 0-2000 ppm of O2; instead, a maximum was measured at 1000 ppm of O2 at 8 MPa and 25 °C, and 50 ppm O2 at 8 MPa and 35 °C in the water-saturated CO2 environment and 50 ppm at 8 MPa and 25 °C, and 100 ppm at 8 MPa and 35 °C in the CO2-saturated water environment. The general corrosion rate at 4 MPa and 35 °C followed a different changing trend with O2 content from that in 8 MPa, 25 °C and 35 °C both in the water-saturated CO2 and the CO2-saturated water environments. Localized corrosion or average corrosion rate of beyond 0.1 mm/y was identified in each test in the CO2-saturated water environment. When O2 was introduced, a more porous corrosion product scale was detected on the coupon surfaces. A final series of corrosion tests with 100 ppm and 2000 ppm O2 and 60% and 80% relative humidity (RH) in CO2 environment did not show any sign of localized corrosion attack, and the average corrosion rates were below 0.1 mm/y at 8 MPa, 25 °C and 35 °C, 4 MPa and 35 °C.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5006/4196","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The CO2 stream in a CCUS application generally includes impurities which could cause internal corrosion of CO2 pipelines. The general and localized corrosion behavior with a variety of O2 concentrations for X65 mild steel both in water-saturated CO2 and CO2-saturated water environments was evaluated using an autoclave. Corrosion tests were performed at 8 MPa and 25 °C, 8 MPa and 35 °C, 4 MPa and 35 °C to simulate the liquid, supercritical and gaseous CO2 transportation. Results indicate that notably higher general corrosion rates were recorded at each O2 concentration in the CO2-saturated water phase than those in the water-saturated CO2 environment. The general corrosion rates did not show gradual rise at 0-2000 ppm of O2; instead, a maximum was measured at 1000 ppm of O2 at 8 MPa and 25 °C, and 50 ppm O2 at 8 MPa and 35 °C in the water-saturated CO2 environment and 50 ppm at 8 MPa and 25 °C, and 100 ppm at 8 MPa and 35 °C in the CO2-saturated water environment. The general corrosion rate at 4 MPa and 35 °C followed a different changing trend with O2 content from that in 8 MPa, 25 °C and 35 °C both in the water-saturated CO2 and the CO2-saturated water environments. Localized corrosion or average corrosion rate of beyond 0.1 mm/y was identified in each test in the CO2-saturated water environment. When O2 was introduced, a more porous corrosion product scale was detected on the coupon surfaces. A final series of corrosion tests with 100 ppm and 2000 ppm O2 and 60% and 80% relative humidity (RH) in CO2 environment did not show any sign of localized corrosion attack, and the average corrosion rates were below 0.1 mm/y at 8 MPa, 25 °C and 35 °C, 4 MPa and 35 °C.
期刊介绍:
CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion.
70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities.
Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives:
• Contribute awareness of corrosion phenomena,
• Advance understanding of fundamental process, and/or
• Further the knowledge of techniques and practices used to reduce corrosion.