Characterization of 3-Dimensional Printing and Casting Materials for use in Magnetic Resonance Imaging Phantoms at 3 T

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Journal of Research of the National Institute of Standards and Technology Pub Date : 2020-09-15 DOI:10.6028/jres.125.028
B. Yunker, K. Stupic, J. Wagner, S. Huddle, R. Shandas, R. Weir, S. Russek, K. Keenan
{"title":"Characterization of 3-Dimensional Printing and Casting Materials for use in Magnetic Resonance Imaging Phantoms at 3 T","authors":"B. Yunker, K. Stupic, J. Wagner, S. Huddle, R. Shandas, R. Weir, S. Russek, K. Keenan","doi":"10.6028/jres.125.028","DOIUrl":null,"url":null,"abstract":"Imaging phantoms are used to calibrate and validate the performance of magnetic resonance imaging (MRI) systems. Many new materials have been developed for additive manufacturing (three-dimensional [3D] printing) processes that may be useful in the direct printing or casting of dimensionally accurate, anatomically accurate, patient-specific, and/or biomimetic MRI phantoms. The T1, T2, and T2* spin relaxation times of polymer samples were tested to discover materials for use as tissue mimics and structures in MRI phantoms. This study included a cohort of polymer compounds that was tested in cured form. The cohort consisted of 101 standardized polymer samples fabricated from: two-part silicones and polyurethanes used in commercial casting processes; one-part optically cured polyurethanes used in 3D printing; and fused deposition thermoplastics used in 3D printing. The testing was performed at 3 T using inversion recovery, spin echo, and gradient echo sequences for T1, T2, and T2*, respectively. T1, T2, and T2* values were plotted with error bars to allow the reader to assess how well a polymer matches a tissue for a specific application. A correlation was performed between T1, T2, T2* values and material density, elongation, tensile strength, and hardness. Two silicones, SI_XP-643 and SI_P-45, may be usable mimics for reported liver values; one silicone, SI_XP-643, may be a useful mimic for muscle; one silicone, SI_XP-738, may be a useful mimic for white matter; and four silicones, SI_P-15, SI_GI-1000, SI_GI-1040, and SI_GI-1110, may be usable mimics for spinal cord. Elongation correlated to T2 (p = 0.0007), tensile strength correlated to T1 (p = 0.002), T2 (p = 0.0003), and T2* (p = 0.003). The 80 samples not providing measurable signal with T1, T2, T2* relaxation values too short to measure with the standard sequences, may be useful for MRI-invisible fixturing and medical devices at 3 T.","PeriodicalId":54766,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":"vol 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Institute of Standards and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.6028/jres.125.028","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 7

Abstract

Imaging phantoms are used to calibrate and validate the performance of magnetic resonance imaging (MRI) systems. Many new materials have been developed for additive manufacturing (three-dimensional [3D] printing) processes that may be useful in the direct printing or casting of dimensionally accurate, anatomically accurate, patient-specific, and/or biomimetic MRI phantoms. The T1, T2, and T2* spin relaxation times of polymer samples were tested to discover materials for use as tissue mimics and structures in MRI phantoms. This study included a cohort of polymer compounds that was tested in cured form. The cohort consisted of 101 standardized polymer samples fabricated from: two-part silicones and polyurethanes used in commercial casting processes; one-part optically cured polyurethanes used in 3D printing; and fused deposition thermoplastics used in 3D printing. The testing was performed at 3 T using inversion recovery, spin echo, and gradient echo sequences for T1, T2, and T2*, respectively. T1, T2, and T2* values were plotted with error bars to allow the reader to assess how well a polymer matches a tissue for a specific application. A correlation was performed between T1, T2, T2* values and material density, elongation, tensile strength, and hardness. Two silicones, SI_XP-643 and SI_P-45, may be usable mimics for reported liver values; one silicone, SI_XP-643, may be a useful mimic for muscle; one silicone, SI_XP-738, may be a useful mimic for white matter; and four silicones, SI_P-15, SI_GI-1000, SI_GI-1040, and SI_GI-1110, may be usable mimics for spinal cord. Elongation correlated to T2 (p = 0.0007), tensile strength correlated to T1 (p = 0.002), T2 (p = 0.0003), and T2* (p = 0.003). The 80 samples not providing measurable signal with T1, T2, T2* relaxation values too short to measure with the standard sequences, may be useful for MRI-invisible fixturing and medical devices at 3 T.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于3T磁共振成像显象的三维印刷和铸造材料的表征
成像模型用于校准和验证磁共振成像(MRI)系统的性能。已经开发了许多用于增材制造(三维[3D]打印)工艺的新材料,这些材料可以用于直接打印或铸造尺寸准确、解剖准确、患者特异性和/或仿生MRI模型。测试聚合物样品的T1、T2和T2*自旋弛豫时间,以发现用作MRI模型中的组织模拟物和结构的材料。这项研究包括一组以固化形式测试的聚合物化合物。该队列由101个标准化聚合物样品组成,这些样品由商业铸造工艺中使用的两部分硅酮和聚氨酯制成;用于3D打印的一部分光学固化的聚氨酯;以及3D打印中使用的熔融沉积热塑性塑料。测试在3T下进行,分别使用T1、T2和T2*的反演恢复、自旋回波和梯度回波序列。用误差条绘制T1、T2和T2*值,以允许读者评估聚合物与特定应用的组织匹配程度。在T1、T2、T2*值与材料密度、伸长率、拉伸强度和硬度之间进行相关性。两种硅酮,SI_XP-643和SI_P-45,可以是报告的肝脏值的可用模拟物;一种硅树脂,SI_XP-643,可能是肌肉的有用模拟物;一种硅树脂,SI_XP-738,可能是白质的有用模拟物;以及四种硅酮,SI_P-15、SI_GI-1000、SI_GI-1040和SI_GI-1110,可以是用于脊髓的可用模拟物。伸长率与T2相关(p=0.0007),抗拉强度与T1相关(p=0.0002),T2(p=0.0003)和T2*(p=0.003。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
33.30%
发文量
10
审稿时长
>12 weeks
期刊介绍: The Journal of Research of the National Institute of Standards and Technology is the flagship publication of the National Institute of Standards and Technology. It has been published under various titles and forms since 1904, with its roots as Scientific Papers issued as the Bulletin of the Bureau of Standards. In 1928, the Scientific Papers were combined with Technologic Papers, which reported results of investigations of material and methods of testing. This new publication was titled the Bureau of Standards Journal of Research. The Journal of Research of NIST reports NIST research and development in metrology and related fields of physical science, engineering, applied mathematics, statistics, biotechnology, information technology.
期刊最新文献
Disinfection of Respirators with Ultraviolet Radiation. Capacity Models and Transmission Risk Mitigation: An Engineering Framework to Predict the Effect of Air Disinfection by Germicidal Ultraviolet Radiation. Inactivation of Pathogens in Air Using Ultraviolet Direct Irradiation Below Exposure Limits. Acceptance Testing Methodology for the Production of Standard Reference Material 2806: Medium Test Dust in Hydraulic Fluid. Toward a New Primary Standardization of Radionuclide Massic Activity Using Microcalorimetry and Quantitative Milligram-Scale Samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1