Raphaël Deragon, D. Saurette, Brandon Heung, J. Caron
{"title":"Mapping the maximum peat thickness of cultivated organic soils in the southwest plain of Montreal","authors":"Raphaël Deragon, D. Saurette, Brandon Heung, J. Caron","doi":"10.1139/cjss-2022-0031","DOIUrl":null,"url":null,"abstract":"Abstract Large organic deposits in the southwestern plain of Montreal have been converted to agricultural land for vegetable production. In addition to the variable depth of the organic deposits, these soils commonly have an impermeable coprogenous layer between the peat and the underlying mineral substratum. Estimations of the depth and thickness of these materials are critical for soil management. Therefore, five drained and cultivated peatlands were studied to estimate their maximum peat thickness (MPT)—a potential key soil property that can help identify management zones for their conservation. MPT can be defined as the depth to the mineral layer (DML) minus the coprogenous layer thickness (CLT). The objective of this study was to estimate DML, CLT, and MPT at a regional scale using environmental covariates derived from remote sensing. Three machine-learning models (Cubist, Random Forest, and k-Nearest Neighbor) were compared to produce maps of DML and CLT, which were combined to generate MPT at a spatial resolution of 10 m. The Cubist model performed the best for predicting both features of interest, yielding Lin’s concordance correlation coefficients of 0.43 and 0.07 for DML and CLT, respectively, using a spatial cross-validation procedure. Interpretation of the drivers of CLT was limited by the poor predictive power of the final model. More precise data on MPT are needed to support soil conservation practices, and more CLT field observations are required to obtain a higher prediction accuracy. Nonetheless, digital soil mapping using open-access geospatial data shows promise for understanding and managing cultivated peatlands.","PeriodicalId":9384,"journal":{"name":"Canadian Journal of Soil Science","volume":"103 1","pages":"103 - 120"},"PeriodicalIF":1.5000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjss-2022-0031","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract Large organic deposits in the southwestern plain of Montreal have been converted to agricultural land for vegetable production. In addition to the variable depth of the organic deposits, these soils commonly have an impermeable coprogenous layer between the peat and the underlying mineral substratum. Estimations of the depth and thickness of these materials are critical for soil management. Therefore, five drained and cultivated peatlands were studied to estimate their maximum peat thickness (MPT)—a potential key soil property that can help identify management zones for their conservation. MPT can be defined as the depth to the mineral layer (DML) minus the coprogenous layer thickness (CLT). The objective of this study was to estimate DML, CLT, and MPT at a regional scale using environmental covariates derived from remote sensing. Three machine-learning models (Cubist, Random Forest, and k-Nearest Neighbor) were compared to produce maps of DML and CLT, which were combined to generate MPT at a spatial resolution of 10 m. The Cubist model performed the best for predicting both features of interest, yielding Lin’s concordance correlation coefficients of 0.43 and 0.07 for DML and CLT, respectively, using a spatial cross-validation procedure. Interpretation of the drivers of CLT was limited by the poor predictive power of the final model. More precise data on MPT are needed to support soil conservation practices, and more CLT field observations are required to obtain a higher prediction accuracy. Nonetheless, digital soil mapping using open-access geospatial data shows promise for understanding and managing cultivated peatlands.
期刊介绍:
The Canadian Journal of Soil Science is an international peer-reviewed journal published in cooperation with the Canadian Society of Soil Science. The journal publishes original research on the use, management, structure and development of soils and draws from the disciplines of soil science, agrometeorology, ecology, agricultural engineering, environmental science, hydrology, forestry, geology, geography and climatology. Research is published in a number of topic sections including: agrometeorology; ecology, biological processes and plant interactions; composition and chemical processes; physical processes and interfaces; genesis, landscape processes and relationships; contamination and environmental stewardship; and management for agricultural, forestry and urban uses.