Filler Metal 16-8-2 for Structural Welds on 304H and 347H Stainless Steels for High-Temperature Service

IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Welding Journal Pub Date : 2020-12-01 DOI:10.29391/2020.99.029
C. Fink, Huimin Wang, B. Alexandrov, J. Penso
{"title":"Filler Metal 16-8-2 for Structural Welds on 304H and 347H Stainless Steels for High-Temperature Service","authors":"C. Fink, Huimin Wang, B. Alexandrov, J. Penso","doi":"10.29391/2020.99.029","DOIUrl":null,"url":null,"abstract":"The use of Type 16-8-2 filler metal was examined for application in structural welds on 304H and 347H stainless steels for high-temperature service applications and compared to welds with matching filler metals 308H and 347, respectively. Microstructural stability during elevated temperature exposure, weld metal impact properties, and susceptibility to stress-relief cracking were examined. It was found that the lean composition and low ferrite (~ 2 Ferrite Number [FN]) in 16-8-2 weld metal provide high resistance to intermetallic phase formation. No hot cracking was observed despite the low ferrite level. The 16-8-2 weld metals displayed superior toughness as compared to the matching filler metal welds, especially after longer elevated-temperature exposure. Experimental evidence for some martensite transformation in aged 16-8-2 weld metal upon cooling to ambient temperature was presented and explained an increase in magnetic response (as FN) after postweld heat treatment at 1300 ̊F (705 ̊C). None of the tested weld metals failed by stress-relief cracking mechanisms under the applied test conditions. The 16-8-2 filler metal welds exhibited significantly lower levels of stress relief during high-temperature exposure and significantly higher tensile strength after high-temperature hold as compared to the matching filler metal welds.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2020.99.029","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 2

Abstract

The use of Type 16-8-2 filler metal was examined for application in structural welds on 304H and 347H stainless steels for high-temperature service applications and compared to welds with matching filler metals 308H and 347, respectively. Microstructural stability during elevated temperature exposure, weld metal impact properties, and susceptibility to stress-relief cracking were examined. It was found that the lean composition and low ferrite (~ 2 Ferrite Number [FN]) in 16-8-2 weld metal provide high resistance to intermetallic phase formation. No hot cracking was observed despite the low ferrite level. The 16-8-2 weld metals displayed superior toughness as compared to the matching filler metal welds, especially after longer elevated-temperature exposure. Experimental evidence for some martensite transformation in aged 16-8-2 weld metal upon cooling to ambient temperature was presented and explained an increase in magnetic response (as FN) after postweld heat treatment at 1300 ̊F (705 ̊C). None of the tested weld metals failed by stress-relief cracking mechanisms under the applied test conditions. The 16-8-2 filler metal welds exhibited significantly lower levels of stress relief during high-temperature exposure and significantly higher tensile strength after high-temperature hold as compared to the matching filler metal welds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
填充金属16-8-2,适用于高温应用的304H和347H不锈钢结构焊接
检查了16-8-2型填充金属在304H和347H不锈钢结构焊缝中的应用情况,并分别与具有匹配填充金属308H和347的焊缝进行了比较。研究了高温暴露过程中的微观结构稳定性、焊缝金属的冲击性能和应力消除裂纹的敏感性。研究发现,16-8-2焊缝金属中的贫成分和低铁素体(约2铁素体数[FN])提供了高的金属间相形成阻力。尽管铁素体含量较低,但未观察到热裂纹。与匹配的填充金属焊缝相比,16-8-2焊缝金属显示出优异的韧性,尤其是在较长的高温暴露之后。提出了16-8-2时效焊缝金属在冷却至环境温度时发生某些马氏体转变的实验证据,并解释了在1300°F(705°C)焊后热处理后磁响应(如FN)的增加。在应用的测试条件下,没有一种测试的焊接金属因应力消除开裂机制而失效。与匹配的填充金属焊缝相比,16-8-2填充金属焊缝在高温暴露期间表现出显著较低的应力消除水平,并且在高温保持后表现出显著较高的拉伸强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Welding Journal
Welding Journal 工程技术-冶金工程
CiteScore
3.00
自引率
0.00%
发文量
23
审稿时长
3 months
期刊介绍: The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction. Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.
期刊最新文献
SiO2-bearing Fluxes Induced Evolution of γ Columnar Grain Size Prediction of Ultrasonic Welding Parameters for Polymer Joining Effect of Wire Preheat and Feed Rate in X80 Steel Laser Root Welds: Part 1 — Microstructure A State-of-the-Art Review on Direct Welding of Polymer to Metal for Structural Applications: Part 1 — Promising Processes Effect of Wire Preheat and Feed Rate in X80 Steel Laser Root Welds: Part 2 — Mechanical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1