Gang Dong, JianGuo Wang, Xiaotian Dong, Shuwei Geng
{"title":"Decentralized robust control of building structures based on sliding mode theory","authors":"Gang Dong, JianGuo Wang, Xiaotian Dong, Shuwei Geng","doi":"10.1002/tal.2047","DOIUrl":null,"url":null,"abstract":"In this paper, a decentralized control algorithm is proposed for actively controlling the response of the flexible tall building structures under earthquake excitations. In the proposed approach, tall building structure was divided into some substructures in the form of state equation. The interaction of the subsystems and external excitations is conducted as bounded generalized force acting on the subsystems. A decentralized control algorithm of tall building structures is established based on the sliding model control theory. The control structure is described based on unit vector control. The control law consists of two parts: a linear control law uL and a nonlinear law uN. The linear control is merely a linear state feedback controller, whereas the nonlinear feedback controller incorporates the discontinuous or continuous nonlinear elements of the control law. Using the advantage of match conditions of sliding mode theory and the bounded feature of generalized force, the overall stability of decentralized control is also investigated. The actuator arrangement and matching conditions are discussed. The effectiveness of the proposed method is demonstrated by the numerical simulation of the decentralized control of a 20‐story benchmark structure under seismic excitations.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.2047","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a decentralized control algorithm is proposed for actively controlling the response of the flexible tall building structures under earthquake excitations. In the proposed approach, tall building structure was divided into some substructures in the form of state equation. The interaction of the subsystems and external excitations is conducted as bounded generalized force acting on the subsystems. A decentralized control algorithm of tall building structures is established based on the sliding model control theory. The control structure is described based on unit vector control. The control law consists of two parts: a linear control law uL and a nonlinear law uN. The linear control is merely a linear state feedback controller, whereas the nonlinear feedback controller incorporates the discontinuous or continuous nonlinear elements of the control law. Using the advantage of match conditions of sliding mode theory and the bounded feature of generalized force, the overall stability of decentralized control is also investigated. The actuator arrangement and matching conditions are discussed. The effectiveness of the proposed method is demonstrated by the numerical simulation of the decentralized control of a 20‐story benchmark structure under seismic excitations.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.