A pre-signed response method based on online certificate status protocol request prediction

IF 4.4 4区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Enterprise Information Systems Pub Date : 2021-10-18 DOI:10.1080/17517575.2021.1986861
Chi-Hua Chen, Genggeng Liu, Yu-Chih Wei, Zuoyong Li, Bon-Yeh Lin
{"title":"A pre-signed response method based on online certificate status protocol request prediction","authors":"Chi-Hua Chen, Genggeng Liu, Yu-Chih Wei, Zuoyong Li, Bon-Yeh Lin","doi":"10.1080/17517575.2021.1986861","DOIUrl":null,"url":null,"abstract":"ABSTRACT This research proposes a pre-signed response method based on online certificate status protocol (OCSP) request prediction. A request prediction method is proposed to analyse and predict potential volumes of certificate signing requests for a given time or period, so that responses to the requests can be generated and pre-signed during off-peak hours for load balancing. In our experiment, the OCSP request data in a certificate centre is collected and analysed for the evaluation of our proposed method. Our results show that the accuracy rate of our proposed method is about 96.17% in the prediction of traffic volumes.","PeriodicalId":11750,"journal":{"name":"Enterprise Information Systems","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enterprise Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/17517575.2021.1986861","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT This research proposes a pre-signed response method based on online certificate status protocol (OCSP) request prediction. A request prediction method is proposed to analyse and predict potential volumes of certificate signing requests for a given time or period, so that responses to the requests can be generated and pre-signed during off-peak hours for load balancing. In our experiment, the OCSP request data in a certificate centre is collected and analysed for the evaluation of our proposed method. Our results show that the accuracy rate of our proposed method is about 96.17% in the prediction of traffic volumes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于在线证书状态协议请求预测的预签名响应方法
摘要本研究提出了一种基于在线证书状态协议(OCSP)请求预测的预签名响应方法。提出了一种请求预测方法来分析和预测给定时间或周期内证书签名请求的潜在数量,以便在非高峰时段生成对请求的响应并进行预签名,以实现负载平衡。在我们的实验中,收集并分析了证书中心的OCSP请求数据,以评估我们提出的方法。结果表明,该方法在交通量预测中的准确率约为96.17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Enterprise Information Systems
Enterprise Information Systems 工程技术-计算机:信息系统
CiteScore
11.00
自引率
6.80%
发文量
24
审稿时长
6 months
期刊介绍: Enterprise Information Systems (EIS) focusses on both the technical and applications aspects of EIS technology, and the complex and cross-disciplinary problems of enterprise integration that arise in integrating extended enterprises in a contemporary global supply chain environment. Techniques developed in mathematical science, computer science, manufacturing engineering, and operations management used in the design or operation of EIS will also be considered.
期刊最新文献
Decentralized finance (DeFi): a paradigm shift in the Fintech Credit risk evaluation on technological SMEs in China An exploratory data analysis of malware/ransomware cyberattacks: insights from an extensive cyber loss dataset Co-creating value in manufacturing supply chains: unravelling the dynamics of innovation ecosystems A systematic data-driven approach for targeted marketing in enterprise information system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1