{"title":"Topological Slow Light Rainbow Trapping and Releasing Based on Gradient Valley Photonic Crystal","authors":"Yu Mao;Zhongfu Li;Weipeng Hu;Xiaoyu Dai;Yuanjiang Xiang","doi":"10.1109/JLT.2022.3171289","DOIUrl":null,"url":null,"abstract":"Slow light topological photonic crystal waveguide offers an attractive platform for enhancing light-matter interaction. We design a slow light rainbow trapping based on translational valley photonic crystal waveguides constructed by a gradient interface width. Through theoretical analysis and numerical calculation, the resulting structure supports topologically protected edge states at different frequencies. The edge state can be slowed down to zero group velocity and trapped at different positions. Moreover, the switch between slow light trapped states and transport states can be easily realized by tuning the structural parameter. Our work can help open up a new avenue to control the flow of light and find great potential for applications such as optical buffers and wavelength-division multiplexing.","PeriodicalId":16144,"journal":{"name":"Journal of Lightwave Technology","volume":"40 15","pages":"5152-5156"},"PeriodicalIF":4.1000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lightwave Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9765731/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6
Abstract
Slow light topological photonic crystal waveguide offers an attractive platform for enhancing light-matter interaction. We design a slow light rainbow trapping based on translational valley photonic crystal waveguides constructed by a gradient interface width. Through theoretical analysis and numerical calculation, the resulting structure supports topologically protected edge states at different frequencies. The edge state can be slowed down to zero group velocity and trapped at different positions. Moreover, the switch between slow light trapped states and transport states can be easily realized by tuning the structural parameter. Our work can help open up a new avenue to control the flow of light and find great potential for applications such as optical buffers and wavelength-division multiplexing.
期刊介绍:
The Journal of Lightwave Technology is comprised of original contributions, both regular papers and letters, covering work in all aspects of optical guided-wave science, technology, and engineering. Manuscripts are solicited which report original theoretical and/or experimental results which advance the technological base of guided-wave technology. Tutorial and review papers are by invitation only. Topics of interest include the following: fiber and cable technologies, active and passive guided-wave componentry (light sources, detectors, repeaters, switches, fiber sensors, etc.); integrated optics and optoelectronics; and systems, subsystems, new applications and unique field trials. System oriented manuscripts should be concerned with systems which perform a function not previously available, out-perform previously established systems, or represent enhancements in the state of the art in general.