Core–shell fibrous membranes of PVDF–Ba0.9Ca0.1TiO3/PVA with osteogenic and piezoelectric properties for bone regeneration

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Biomedical materials Pub Date : 2019-11-06 DOI:10.1088/1748-605X/ab5509
Narges Ahmadi, M. Kharaziha, S. Labbaf
{"title":"Core–shell fibrous membranes of PVDF–Ba0.9Ca0.1TiO3/PVA with osteogenic and piezoelectric properties for bone regeneration","authors":"Narges Ahmadi, M. Kharaziha, S. Labbaf","doi":"10.1088/1748-605X/ab5509","DOIUrl":null,"url":null,"abstract":"The goal of this research was to promote the bioactivity and osteogenic characteristics of polyvinylidene fluoride(PVDF) fibrous membrane, while preserving its piezoelectric property for bone regeneration. In this regard, core–shell fibrous membrane of PVDF–Ba0.9Ca0.1TiO3/polyvinyl alcohol(PVA) was developed via emulsion electrospinning approach. While PVA was in the outer layer of fibers with thickness of 53 ± 18 nm, the Ba0.9Ca0.1TiO3 nanoparticles was uniformly dispersed in the PVDF core. The formation of PVA shell resulted in significant improvement of its hydrophilicity (3 times) and degradation rate, while piezoelectricity did noticeably modulate. In addition, incorporation of Ba0.9Ca0.1TiO3 nanopowder remarkably improved bioactivity, protein adsorption and mechanical properties of PVDF/PVA fibrous membranes. Finally, the osteogenic differentiation of mesenchymal stem cells on the nanocomposite fibrous membranes, in the absence of osteogenic supplements, was also observed. Overall, the results confirmed the promising potential of PVDF–Ba0.9Ca0.1TiO3/PVA fibrous membrane containing 1–2 wt% nanopowder for bone regeneration.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab5509","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab5509","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 15

Abstract

The goal of this research was to promote the bioactivity and osteogenic characteristics of polyvinylidene fluoride(PVDF) fibrous membrane, while preserving its piezoelectric property for bone regeneration. In this regard, core–shell fibrous membrane of PVDF–Ba0.9Ca0.1TiO3/polyvinyl alcohol(PVA) was developed via emulsion electrospinning approach. While PVA was in the outer layer of fibers with thickness of 53 ± 18 nm, the Ba0.9Ca0.1TiO3 nanoparticles was uniformly dispersed in the PVDF core. The formation of PVA shell resulted in significant improvement of its hydrophilicity (3 times) and degradation rate, while piezoelectricity did noticeably modulate. In addition, incorporation of Ba0.9Ca0.1TiO3 nanopowder remarkably improved bioactivity, protein adsorption and mechanical properties of PVDF/PVA fibrous membranes. Finally, the osteogenic differentiation of mesenchymal stem cells on the nanocomposite fibrous membranes, in the absence of osteogenic supplements, was also observed. Overall, the results confirmed the promising potential of PVDF–Ba0.9Ca0.1TiO3/PVA fibrous membrane containing 1–2 wt% nanopowder for bone regeneration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有成骨和压电性能的PVDF-Ba0.9Ca0.1TiO3 /PVA核壳纤维膜用于骨再生
本研究旨在提高聚偏氟乙烯(PVDF)纤维膜的生物活性和成骨特性,同时保持其骨再生的压电特性。为此,采用乳液静电纺丝法制备了PVDF-Ba0.9Ca0.1TiO3 /聚乙烯醇(PVA)的核壳纤维膜。PVA位于纤维外层(厚度为53±18 nm),而Ba0.9Ca0.1TiO3纳米粒子均匀分布在PVDF芯中。聚乙烯醇壳层的形成使聚乙烯醇的亲水性和降解率显著提高(3倍),而压电性有明显的调节。此外,Ba0.9Ca0.1TiO3纳米粉的掺入显著提高了PVDF/PVA纤维膜的生物活性、蛋白质吸附和力学性能。最后,在没有成骨补充的情况下,我们也观察到了纳米复合纤维膜上的间充质干细胞的成骨分化。总的来说,结果证实了含有1-2 wt%纳米粉的PVDF-Ba0.9Ca0.1TiO3 /PVA纤维膜在骨再生方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical materials
Biomedical materials 工程技术-材料科学:生物材料
CiteScore
6.70
自引率
7.50%
发文量
294
审稿时长
3 months
期刊介绍: The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare. Typical areas of interest include (but are not limited to): -Synthesis/characterization of biomedical materials- Nature-inspired synthesis/biomineralization of biomedical materials- In vitro/in vivo performance of biomedical materials- Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning- Microfluidic systems (including disease models): fabrication, testing & translational applications- Tissue engineering/regenerative medicine- Interaction of molecules/cells with materials- Effects of biomaterials on stem cell behaviour- Growth factors/genes/cells incorporated into biomedical materials- Biophysical cues/biocompatibility pathways in biomedical materials performance- Clinical applications of biomedical materials for cell therapies in disease (cancer etc)- Nanomedicine, nanotoxicology and nanopathology- Pharmacokinetic considerations in drug delivery systems- Risks of contrast media in imaging systems- Biosafety aspects of gene delivery agents- Preclinical and clinical performance of implantable biomedical materials- Translational and regulatory matters
期刊最新文献
A low-swelling alginate hydrogel with antibacterial hemostatic and radical scavenging properties for open wound healing. Evaluation of properties for Carbothane™ 3575A-based electrospun vascular grafts in vitro and in vivo. Migration and retention of human osteosarcoma cells in bioceramic graft with open channel architecture designed for bone tissue engineering. Enhancement of induction heating capability of bioactive SiO2–CaO–Na2O–P2O5 glass-ceramics by selective substitution with magnetite nanoparticles Antiproliferative efficacy and mechanism of action of garlic phytochemicals-functionalized gold nanoparticles in triple-negative breast cancer cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1