Towards Femtoscan-Assisted Analysis of Liquid Crystal Self-Organization on Different Polymer and Glass Surfaces for Lab-on-a-Chip and Lab-on-a-Dish Applications, Including Optofluidic and Flexoelectric Ones
E. Adamovich, Eugenia Buryanskaya, Anthon Elfimov, I. Maklakova, O. Gradov, M. Gradova, Theodor K. Orehov
{"title":"Towards Femtoscan-Assisted Analysis of Liquid Crystal Self-Organization on Different Polymer and Glass Surfaces for Lab-on-a-Chip and Lab-on-a-Dish Applications, Including Optofluidic and Flexoelectric Ones","authors":"E. Adamovich, Eugenia Buryanskaya, Anthon Elfimov, I. Maklakova, O. Gradov, M. Gradova, Theodor K. Orehov","doi":"10.21926/rpm.2302022","DOIUrl":null,"url":null,"abstract":"In this paper, starting with an introductory review of the applications of liquid crystals and polymer-dispersed liquid crystal systems in (bio)sensors and microfluidics, the possibilities of visualizing self-organization products of liquid crystalline media or field-induced instabilities of liquid crystalline systems are considered. In particular illustrated cases, it is proposed to use FemtoScan software-containing metrological complexes to visualize instabilities in liquid crystalline systems and products of self-organization in liquid crystalline media.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent progress in materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/rpm.2302022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, starting with an introductory review of the applications of liquid crystals and polymer-dispersed liquid crystal systems in (bio)sensors and microfluidics, the possibilities of visualizing self-organization products of liquid crystalline media or field-induced instabilities of liquid crystalline systems are considered. In particular illustrated cases, it is proposed to use FemtoScan software-containing metrological complexes to visualize instabilities in liquid crystalline systems and products of self-organization in liquid crystalline media.