Deng Zhang, Yingxin Yang, Haitao Ren, Kuilin Huang, Shiwei Niu
{"title":"Experimental research on efficiency and vibration of polycrystalline diamond compact bit in heterogeneous rock","authors":"Deng Zhang, Yingxin Yang, Haitao Ren, Kuilin Huang, Shiwei Niu","doi":"10.1016/j.petrol.2022.111175","DOIUrl":null,"url":null,"abstract":"<div><p>To explore the rock-breaking efficiency and vibration characteristics<span> of polycrystalline diamond<span> compact bit in heterogeneous rock, this paper analyzes the typical vibration characteristics and failure modes of polycrystalline diamond compact bit. Then, the transverse combination of rocks was innovatively used to simulate a situation of soft-hard interbedded formation, forming three kinds of transversely combined heterogeneous rock samples with different degrees of heterogeneity. We conducted a series of laboratory rock-breaking experiments and the experimental results indicate that rock heterogeneity greatly impacted vibration acceleration, lateral bending moment, rate of penetration<span><span>, and drilling trend. With the increase in weight on bit and rotation speed, the rate of penetration gradually increases. However, the tangential, axial, and radial vibration acceleration amplitude of the bit all increase simultaneously, which implies that the vibration impact generated by rock-bit interaction increased. The difference in the cutting depth of the drill bit in the heterogeneous formation causes low efficiency. The stronger the heterogeneity, the lower the rate of penetration. Rock heterogeneity, especially the rock properties of the combined rock samples, significantly impact acceleration and lateral bending moment. As rock heterogeneity increased, the bit acceleration increased significantly, intensifying the bit vibration; the lateral bending moment increased slightly, but its fluctuation intensified. The strength difference of heterogeneous rock causes eccentricity, the harder rock exerts greater force on the bit, causing the bit to deviate from the original trajectory. The greater the difference, the greater the eccentricity, consequently, the more the bit shifts to the softer side. Adjusting rotation speed and depth of cut control may be feasible solutions to solve the problem of low drilling speed and high vibration in heterogeneous formation. It is hoped that the findings in this paper will be helpful to explore a reasonable way to </span>reduce vibration while maintaining high efficiency.</span></span></span></p></div>","PeriodicalId":16717,"journal":{"name":"Journal of Petroleum Science and Engineering","volume":"220 ","pages":"Article 111175"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920410522010270","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
To explore the rock-breaking efficiency and vibration characteristics of polycrystalline diamond compact bit in heterogeneous rock, this paper analyzes the typical vibration characteristics and failure modes of polycrystalline diamond compact bit. Then, the transverse combination of rocks was innovatively used to simulate a situation of soft-hard interbedded formation, forming three kinds of transversely combined heterogeneous rock samples with different degrees of heterogeneity. We conducted a series of laboratory rock-breaking experiments and the experimental results indicate that rock heterogeneity greatly impacted vibration acceleration, lateral bending moment, rate of penetration, and drilling trend. With the increase in weight on bit and rotation speed, the rate of penetration gradually increases. However, the tangential, axial, and radial vibration acceleration amplitude of the bit all increase simultaneously, which implies that the vibration impact generated by rock-bit interaction increased. The difference in the cutting depth of the drill bit in the heterogeneous formation causes low efficiency. The stronger the heterogeneity, the lower the rate of penetration. Rock heterogeneity, especially the rock properties of the combined rock samples, significantly impact acceleration and lateral bending moment. As rock heterogeneity increased, the bit acceleration increased significantly, intensifying the bit vibration; the lateral bending moment increased slightly, but its fluctuation intensified. The strength difference of heterogeneous rock causes eccentricity, the harder rock exerts greater force on the bit, causing the bit to deviate from the original trajectory. The greater the difference, the greater the eccentricity, consequently, the more the bit shifts to the softer side. Adjusting rotation speed and depth of cut control may be feasible solutions to solve the problem of low drilling speed and high vibration in heterogeneous formation. It is hoped that the findings in this paper will be helpful to explore a reasonable way to reduce vibration while maintaining high efficiency.
期刊介绍:
The objective of the Journal of Petroleum Science and Engineering is to bridge the gap between the engineering, the geology and the science of petroleum and natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of petroleum engineering, natural gas engineering and petroleum (natural gas) geology. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership.
The Journal of Petroleum Science and Engineering covers the fields of petroleum (and natural gas) exploration, production and flow in its broadest possible sense. Topics include: origin and accumulation of petroleum and natural gas; petroleum geochemistry; reservoir engineering; reservoir simulation; rock mechanics; petrophysics; pore-level phenomena; well logging, testing and evaluation; mathematical modelling; enhanced oil and gas recovery; petroleum geology; compaction/diagenesis; petroleum economics; drilling and drilling fluids; thermodynamics and phase behavior; fluid mechanics; multi-phase flow in porous media; production engineering; formation evaluation; exploration methods; CO2 Sequestration in geological formations/sub-surface; management and development of unconventional resources such as heavy oil and bitumen, tight oil and liquid rich shales.