Zhenying Liu, N. Xie, Hanxin Zhang, Shouwu Huang, Chongmei Wu, Shuhuan He, Jinbo Zhu, Yin Liu
{"title":"Effect of Al(OH)3 addition on densification mechanism and properties of reaction-sintered mullite-corundum composite ceramics","authors":"Zhenying Liu, N. Xie, Hanxin Zhang, Shouwu Huang, Chongmei Wu, Shuhuan He, Jinbo Zhu, Yin Liu","doi":"10.1080/21870764.2022.2114145","DOIUrl":null,"url":null,"abstract":"ABSTRACT Mullite composite ceramics were fabricated by using mullite powder from waste coal gangue and Al(OH)3 as starting materials. The effects of sintering temperature and Al(OH)3 content on phase composition, microstructure, and mechanical properties of the ceramics were systematically investigated. Results show that the bulk density and flexural strength of composite ceramics increase as the temperature increases from 1480°C to 1560°C. The composite ceramics exhibit optimal performances with addition of 10 wt.% Al(OH)3 at 1560°C, a bulk density of 2.43 g/cm3 and a flexural strength of 124.28 MPa, respectively. Moreover, additional Al(OH)3 promotes a reaction between SiO2 and Al2O3 and forms more mullite phase. The increase in mullite content endows the composite ceramics with high mechanical properties. Scanning electron microscope images indicate that the mullite particles exhibit an interlocking structure, while the corundum phase is “pinned” within the mullite interlocking structure, contributing to the mechanical properties of composite ceramics.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Ceramic Societies","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21870764.2022.2114145","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT Mullite composite ceramics were fabricated by using mullite powder from waste coal gangue and Al(OH)3 as starting materials. The effects of sintering temperature and Al(OH)3 content on phase composition, microstructure, and mechanical properties of the ceramics were systematically investigated. Results show that the bulk density and flexural strength of composite ceramics increase as the temperature increases from 1480°C to 1560°C. The composite ceramics exhibit optimal performances with addition of 10 wt.% Al(OH)3 at 1560°C, a bulk density of 2.43 g/cm3 and a flexural strength of 124.28 MPa, respectively. Moreover, additional Al(OH)3 promotes a reaction between SiO2 and Al2O3 and forms more mullite phase. The increase in mullite content endows the composite ceramics with high mechanical properties. Scanning electron microscope images indicate that the mullite particles exhibit an interlocking structure, while the corundum phase is “pinned” within the mullite interlocking structure, contributing to the mechanical properties of composite ceramics.
期刊介绍:
The Journal of Asian Ceramic Societies is an open access journal publishing papers documenting original research and reviews covering all aspects of science and technology of Ceramics, Glasses, Composites, and related materials. These papers include experimental and theoretical aspects emphasizing basic science, processing, microstructure, characteristics, and functionality of ceramic materials. The journal publishes high quality full papers, letters for rapid publication, and in-depth review articles. All papers are subjected to a fair peer-review process.