Abrupt Changes in Atmospheric Circulation During the Medieval Climate Anomaly and Little Ice Age Recorded by Sr‐Nd Isotopes in the Siple Dome Ice Core, Antarctica
B. Koffman, S. Goldstein, G. Winckler, M. Kaplan, L. Bolge, P. Biscaye
{"title":"Abrupt Changes in Atmospheric Circulation During the Medieval Climate Anomaly and Little Ice Age Recorded by Sr‐Nd Isotopes in the Siple Dome Ice Core, Antarctica","authors":"B. Koffman, S. Goldstein, G. Winckler, M. Kaplan, L. Bolge, P. Biscaye","doi":"10.1029/2022PA004543","DOIUrl":null,"url":null,"abstract":"The Southern Hemisphere westerly winds (SWW) play a critical role in global climate, yet their behavior on decadal to centennial timescales, and the mechanisms driving these changes during the preindustrial era, remain poorly understood. We present a decadally resolved record of dust compositions using strontium and neodymium isotope ratios in mineral dust from the Siple Dome ice core, Antarctica, to explore the potential that abrupt changes in SWW behavior occurred over the past millennium. The record spans portions of the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) intervals as defined in the Northern Hemisphere. We find evidence of an abrupt strengthening of atmospheric circulation during the MCA at ∼1125 CE (825 BP) that persisted for about 60 yr, indicating increased influence of Patagonia‐sourced dust. This occurs during an extended positive phase of Southern Annular Mode (SAM+)‐like conditions, characterized by high SWW velocities and a southerly shift of the main wind belt toward ∼60°S, suggesting that rapid changes in SWW strength could occur under the present SAM+ pattern. A second 20 yr long shift in dust compositions during the LIA at ∼1748 CE (200 BP) is coincident with higher dust delivery to Siple Dome, and may indicate increased dust emissions related to glacier activity in Patagonia. The new Siple Dome ice core data set demonstrates that Sr‐Nd isotopes can be used to trace shifts in atmospheric circulation on decadal timescales.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2022PA004543","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Southern Hemisphere westerly winds (SWW) play a critical role in global climate, yet their behavior on decadal to centennial timescales, and the mechanisms driving these changes during the preindustrial era, remain poorly understood. We present a decadally resolved record of dust compositions using strontium and neodymium isotope ratios in mineral dust from the Siple Dome ice core, Antarctica, to explore the potential that abrupt changes in SWW behavior occurred over the past millennium. The record spans portions of the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) intervals as defined in the Northern Hemisphere. We find evidence of an abrupt strengthening of atmospheric circulation during the MCA at ∼1125 CE (825 BP) that persisted for about 60 yr, indicating increased influence of Patagonia‐sourced dust. This occurs during an extended positive phase of Southern Annular Mode (SAM+)‐like conditions, characterized by high SWW velocities and a southerly shift of the main wind belt toward ∼60°S, suggesting that rapid changes in SWW strength could occur under the present SAM+ pattern. A second 20 yr long shift in dust compositions during the LIA at ∼1748 CE (200 BP) is coincident with higher dust delivery to Siple Dome, and may indicate increased dust emissions related to glacier activity in Patagonia. The new Siple Dome ice core data set demonstrates that Sr‐Nd isotopes can be used to trace shifts in atmospheric circulation on decadal timescales.
期刊介绍:
Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.