Differential proteomics highlights specific testicular proteins associated with chicken sperm motility and fertility potential

IF 3.5 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Annals of Agricultural Science Pub Date : 2023-06-01 DOI:10.1016/j.aoas.2023.05.001
Yanyan Sun , Yunlei Li , Lei Shi , Fuguang Xue , Hong Xu , Qingshi Meng , Yifan Liu , Yunhe Zong , Hui Ma , Jilan Chen
{"title":"Differential proteomics highlights specific testicular proteins associated with chicken sperm motility and fertility potential","authors":"Yanyan Sun ,&nbsp;Yunlei Li ,&nbsp;Lei Shi ,&nbsp;Fuguang Xue ,&nbsp;Hong Xu ,&nbsp;Qingshi Meng ,&nbsp;Yifan Liu ,&nbsp;Yunhe Zong ,&nbsp;Hui Ma ,&nbsp;Jilan Chen","doi":"10.1016/j.aoas.2023.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>Sperm motility, the percentage of sperm with forward progressions, is one of the semen quality traits that is highly related with male fertility potential in farm animals. The proportion of roosters with low sperm motility impedes the reproduction efficiency. This study aimed to determine crucial testicular proteins linked to sperm motility defects as causes of subfertility in roosters. iTRAQ was performed with the testis from five low sperm motility roosters and three high ones. A total of 2345 proteins were identified, of which, 86 were differentially expressed (DEPs), including 5 up-regulated and 88 down-regulated proteins in the low group. These DEPs were mainly enriched in cytoskeleton and cilium cell component, and biological processes related to sperm motility, and protein transport, and cellular protein localization. A cluster of 13 down-regulated proteins such as IFT88, TEKT1, ACTN2, DNAH5, RSPH9, and SPAG6, were associated with axoneme assembly. Further western blot and immunohistochemical analysis confirmed the down-regulated SPAG6 expression in low group, and indicated its expression in other cell types in testis beyond round spermatids, and that its pattern was in accordance with testis development and recession pace. Silencing transcription factor SOX5 down-regulated SPAG6 transcripts and impaired the cell proliferation and migration. In summary, this study highlights that down-regulated sperm flagellar structure associated proteins were the potential cause of low sperm motility. More specifically, the highly conserved SPAG6 protein across species is a positive regulator for testis development, spermatogenesis, and sperm motility regulation in chickens.</p></div>","PeriodicalId":54198,"journal":{"name":"Annals of Agricultural Science","volume":"68 1","pages":"Pages 36-47"},"PeriodicalIF":3.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Agricultural Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0570178323000040","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Sperm motility, the percentage of sperm with forward progressions, is one of the semen quality traits that is highly related with male fertility potential in farm animals. The proportion of roosters with low sperm motility impedes the reproduction efficiency. This study aimed to determine crucial testicular proteins linked to sperm motility defects as causes of subfertility in roosters. iTRAQ was performed with the testis from five low sperm motility roosters and three high ones. A total of 2345 proteins were identified, of which, 86 were differentially expressed (DEPs), including 5 up-regulated and 88 down-regulated proteins in the low group. These DEPs were mainly enriched in cytoskeleton and cilium cell component, and biological processes related to sperm motility, and protein transport, and cellular protein localization. A cluster of 13 down-regulated proteins such as IFT88, TEKT1, ACTN2, DNAH5, RSPH9, and SPAG6, were associated with axoneme assembly. Further western blot and immunohistochemical analysis confirmed the down-regulated SPAG6 expression in low group, and indicated its expression in other cell types in testis beyond round spermatids, and that its pattern was in accordance with testis development and recession pace. Silencing transcription factor SOX5 down-regulated SPAG6 transcripts and impaired the cell proliferation and migration. In summary, this study highlights that down-regulated sperm flagellar structure associated proteins were the potential cause of low sperm motility. More specifically, the highly conserved SPAG6 protein across species is a positive regulator for testis development, spermatogenesis, and sperm motility regulation in chickens.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
差异蛋白质组学强调与鸡精子活力和生育潜力相关的特定睾丸蛋白
精子活力,即精子向前发展的百分比,是与雄性动物生育能力高度相关的精液质量特征之一。精子活力低的公鸡比例影响了繁殖效率。这项研究的目的是确定与精子运动缺陷有关的关键睾丸蛋白,这是公鸡生育能力低下的原因。iTRAQ是用5只精子活力低的公鸡和3只精子活力高的公鸡的睾丸进行的。共鉴定出2345个蛋白,其中差异表达(dep)蛋白86个,其中低表达组上调5个,下调88个。这些DEPs主要富集于细胞骨架和纤毛细胞组分,以及与精子运动、蛋白质转运和细胞蛋白质定位有关的生物过程。一组13个下调蛋白,如IFT88、TEKT1、ACTN2、DNAH5、RSPH9和SPAG6,与轴突蛋白组装有关。进一步的western blot和免疫组化分析证实了低水平组中SPAG6的表达下调,并表明其在睾丸除圆形精子外的其他细胞类型中均有表达,其表达模式与睾丸发育和衰退速度一致。沉默转录因子SOX5可下调SPAG6转录物,损害细胞增殖和迁移。总之,本研究强调了精子鞭毛结构相关蛋白的下调是精子活力低下的潜在原因。更具体地说,跨物种高度保守的SPAG6蛋白是鸡睾丸发育、精子发生和精子运动调节的积极调节因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Agricultural Science
Annals of Agricultural Science AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
12.60
自引率
0.00%
发文量
18
审稿时长
33 days
期刊介绍: Annals of Agricultural Sciences (AOAS) is the official journal of Faculty of Agriculture, Ain Shams University. AOAS is an open access peer-reviewed journal publishing original research articles and review articles on experimental and modelling research at laboratory, field, farm, landscape, and industrial levels. AOAS aims to maximize the quality of the agricultural sector across the globe with emphasis on the Arabian countries by focusing on publishing the high-quality applicable researches, in addition to the new methods and frontiers leading to maximizing the quality and quantity of both plant and animal yield and final products.
期刊最新文献
Probiotic potential of lactic acid bacteria isolated from honeybees stomach: Functional and technological insights Combining wide seedling strip planting with a higher plant density results in greater yield gains in winter wheat Appropriate application of organic fertilizer enhanced yield, microelement content, and quality of maize grain under a rotation system 2-Chloro-6-(trichloromethyl) pyridine stabilized early japonica rice yield by increasing nitrogen uptake and utilization under reduced nitrogen rates Optimizing rice yield and phosphorus use efficiency through root morphology and soil phosphorus management in agricultural soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1