{"title":"Review - bioactive glass implants for potential application in structural bone repair","authors":"M. Rahaman, W. Xiao, Wen-hai Huang","doi":"10.1515/bglass-2017-0005","DOIUrl":null,"url":null,"abstract":"Abstract Bioactive glass particles andweak scaffolds have been used to heal small contained bone defects but an unmet challenge is the development of bioactive glass implants with the requisite mechanical reliability and in vivo performance to heal structural bone defects. Inadequate mechanical strength and a brittle mechanical response have been key concerns in the use of bioactive glass scaffolds in structural bone repair. Recent research has shown the capacity to create strong porous bioactive glass scaffolds and the ability of these scaffolds to heal segmental bone defects in small and large rodents at a rate comparable to autogenous bone grafts. Loading these strong porous scaffolds with bone morphogenetic protein-2 can significantly enhance their ability to regenerate bone. Recentwork has also shown that coating the external surface of strong porous scaffolds with an adherent biodegradable polymer can dramatically improve their load-bearing capacity in flexural loading and their work of fracture (a measure of toughness). These tough and strong bioactive glass-polymer composites with an internal architecture conducive to bone infiltration could provide optimal synthetic implants for structural bone repair.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2017-0005","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2017-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 20
Abstract
Abstract Bioactive glass particles andweak scaffolds have been used to heal small contained bone defects but an unmet challenge is the development of bioactive glass implants with the requisite mechanical reliability and in vivo performance to heal structural bone defects. Inadequate mechanical strength and a brittle mechanical response have been key concerns in the use of bioactive glass scaffolds in structural bone repair. Recent research has shown the capacity to create strong porous bioactive glass scaffolds and the ability of these scaffolds to heal segmental bone defects in small and large rodents at a rate comparable to autogenous bone grafts. Loading these strong porous scaffolds with bone morphogenetic protein-2 can significantly enhance their ability to regenerate bone. Recentwork has also shown that coating the external surface of strong porous scaffolds with an adherent biodegradable polymer can dramatically improve their load-bearing capacity in flexural loading and their work of fracture (a measure of toughness). These tough and strong bioactive glass-polymer composites with an internal architecture conducive to bone infiltration could provide optimal synthetic implants for structural bone repair.
期刊介绍:
Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.