Cryogenic hydrogen Moderator infrastructure at ESS

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-09-29 DOI:10.3233/jnr-220033
Y. Bessler, G. Natour
{"title":"Cryogenic hydrogen Moderator infrastructure at ESS","authors":"Y. Bessler, G. Natour","doi":"10.3233/jnr-220033","DOIUrl":null,"url":null,"abstract":"The European Spallation Source (ESS) in Lund, Sweden, is going to be the most powerful spallation neutron source in the world. As one subsystem of the Target Station, which was develop and built at Central Institute of Engineering, Electronics and Analytics – Engineering and Technology (ZEA-1) of Forschungszentrum Juelich, the cold Moderator slows down high energy neutrons from the spallation process. To gain maximum neutron flux intensities along with high system availability for condensed and soft matter research, an optimized liquid hydrogen Moderator circuit has been developed. Hydrogen with a pressure around 1 MPa, a temperature around 20 K, and a para-hydrogen fraction of at least 0.995 will be utilized to interact with neutrons in a unique cold Moderator vessel arrangement. Hydrogen conversion from ortho- to para-hydrogen will be controlled using a catalyst. Two turbo pumps are arranged in series and circulate the cryogen. A helium refrigerator, the Target Moderator Cryoplant (TMCP), continuously recools the hydrogen mass flow. The pressure stabilization is achieved by a pressure control buffer. The individual ESS Cryogenic Moderator System (CMS) components, the first and second generation of hydrogen Moderators (BF1 and BF2) and a first draft of a deuterium Moderator upgrade are described in detail.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jnr-220033","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The European Spallation Source (ESS) in Lund, Sweden, is going to be the most powerful spallation neutron source in the world. As one subsystem of the Target Station, which was develop and built at Central Institute of Engineering, Electronics and Analytics – Engineering and Technology (ZEA-1) of Forschungszentrum Juelich, the cold Moderator slows down high energy neutrons from the spallation process. To gain maximum neutron flux intensities along with high system availability for condensed and soft matter research, an optimized liquid hydrogen Moderator circuit has been developed. Hydrogen with a pressure around 1 MPa, a temperature around 20 K, and a para-hydrogen fraction of at least 0.995 will be utilized to interact with neutrons in a unique cold Moderator vessel arrangement. Hydrogen conversion from ortho- to para-hydrogen will be controlled using a catalyst. Two turbo pumps are arranged in series and circulate the cryogen. A helium refrigerator, the Target Moderator Cryoplant (TMCP), continuously recools the hydrogen mass flow. The pressure stabilization is achieved by a pressure control buffer. The individual ESS Cryogenic Moderator System (CMS) components, the first and second generation of hydrogen Moderators (BF1 and BF2) and a first draft of a deuterium Moderator upgrade are described in detail.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ESS的低温氢慢化剂基础设施
位于瑞典隆德的欧洲散裂中子源(ESS)将成为世界上最强大的散裂中子来源。作为目标站的一个子系统,冷慢化剂减缓了散裂过程中的高能中子。目标站由Forschungszentrum Juelich的中央工程、电子和分析研究所-工程与技术(ZEA-1)开发和建造。为了获得最大中子通量强度以及用于凝聚态和软质研究的高系统可用性,开发了一种优化的液氢慢化剂回路。压力约为1MPa、温度约为20K、对氢分数至少为0.995的氢气将被用于在独特的冷慢化剂容器布置中与中子相互作用。将使用催化剂控制氢从邻位氢到对位氢的转化。两个涡轮泵串联布置,使冷冻剂循环。氦冷冻机,目标慢化剂冷冻机(TMCP),不断地重新冷却氢气质量流。压力稳定是通过压力控制缓冲器实现的。详细描述了单个ESS低温慢化剂系统(CMS)组件、第一代和第二代氢慢化剂(BF1和BF2)以及氘慢化剂升级的初稿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Psychosexual dysfunction in male patients with cannabis dependence and synthetic cannabinoid dependence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1