Valeria Alejandra Goyzueta Torres, Ronald Fabricio Centeno Cardenas, Victor Andre Ranilla Coaguila
{"title":"Clasificación de tutoriales en YouTube basándonos en el análisis de sentimientos realizados a sus comentarios","authors":"Valeria Alejandra Goyzueta Torres, Ronald Fabricio Centeno Cardenas, Victor Andre Ranilla Coaguila","doi":"10.48168/innosoft.s9.a66","DOIUrl":null,"url":null,"abstract":"El flujo de información surge día a día mediante internet de manera continua gracias a las constantes interacciones presentes entre los usuarios, estas interacciones presentan sentimientos que pueden ser positivos o negativos. Esto ayuda mucho a los creadores de contenido de las redes sociales a comprender cuan útil es lo que ellos hacen para sus seguidores, y es que, si estos son un gran número, un análisis hecho por una sola persona no es suficiente. Para ello es necesario el uso de herramientas que operan con grandes cantidades de datos como BERT, que es un modelo que ayuda al análisis de sentimientos y clasificación de comentarios basados en lo que expresa uno de estos. En este trabajo se usará este modelo para la clasificación de comentarios de YouTube y clasificación de videos de esta misma plataforma, valorando estos videos según su contenido y ayudando a los espectadores a elegir los videos si es que estos lo ayudarán con respecto a lo que se encuentran buscando. Se harán además uso de métricas y de sugerencias futuras para la propuesta mencionada en este trabajo.","PeriodicalId":52619,"journal":{"name":"Innovacion y Software","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovacion y Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48168/innosoft.s9.a66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
El flujo de información surge día a día mediante internet de manera continua gracias a las constantes interacciones presentes entre los usuarios, estas interacciones presentan sentimientos que pueden ser positivos o negativos. Esto ayuda mucho a los creadores de contenido de las redes sociales a comprender cuan útil es lo que ellos hacen para sus seguidores, y es que, si estos son un gran número, un análisis hecho por una sola persona no es suficiente. Para ello es necesario el uso de herramientas que operan con grandes cantidades de datos como BERT, que es un modelo que ayuda al análisis de sentimientos y clasificación de comentarios basados en lo que expresa uno de estos. En este trabajo se usará este modelo para la clasificación de comentarios de YouTube y clasificación de videos de esta misma plataforma, valorando estos videos según su contenido y ayudando a los espectadores a elegir los videos si es que estos lo ayudarán con respecto a lo que se encuentran buscando. Se harán además uso de métricas y de sugerencias futuras para la propuesta mencionada en este trabajo.