The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Biomedical materials Pub Date : 2019-11-08 DOI:10.1088/1748-605X/ab49f2
C. Brennan, K. Eichholz, D. Hoey
{"title":"The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis","authors":"C. Brennan, K. Eichholz, D. Hoey","doi":"10.1088/1748-605X/ab49f2","DOIUrl":null,"url":null,"abstract":"Limitations associated with current bone grafting materials has necessitated the development of synthetic scaffolds that mimic the native tissue for bone repair. Scaffold parameters such as pore size, pore interconnectivity, fibre diameter, and fibre stiffness are crucial parameters of fibrous bone tissue engineering (BTE) scaffolds required to replicate the native environment. Optimum values vary with material, fabrication method and cell type. Melt electrowriting (MEW) provides precise control over extracellular matrix (ECM)-like fibrous scaffold architecture. The goal of this study was to fabricate and characterise poly-ε-caprolactone (PCL) fibrous scaffolds with 100, 200, and 300 μm pore sizes using MEW and determine the influence of pore size on human bone marrow stem cell (hMSC) adhesion, morphology, proliferation, mechanosignalling and osteogenesis. Each scaffold was fabricated with a fibre diameter of 4.01 ± 0.06 μm. The findings from this study highlight the enhanced osteogenic effects of controlled micro-scale fibre deposition using MEW, where the benefits of 100 μm square pores in comparison with larger pore sizes are illustrated, a pore size traditionally reported as a lower limit for osteogenesis. This suggests a lower pore size is optimal when hMSCs are seeded in a 3D ECM-like fibrous structure, with the 100 μm pore size optimal as it demonstrates the highest global stiffness, local fibre stiffness, highest seeding efficiency, maintains a spread cellular morphology, and significantly enhances hMSC collagen and mineral deposition. Similarly, this platform represents an effective in vitro model for the study of hMSC behaviour to determine the significant osteogenic benefits of controlling ECM-like fibrous BTE scaffold pore size using MEW.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab49f2","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab49f2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 42

Abstract

Limitations associated with current bone grafting materials has necessitated the development of synthetic scaffolds that mimic the native tissue for bone repair. Scaffold parameters such as pore size, pore interconnectivity, fibre diameter, and fibre stiffness are crucial parameters of fibrous bone tissue engineering (BTE) scaffolds required to replicate the native environment. Optimum values vary with material, fabrication method and cell type. Melt electrowriting (MEW) provides precise control over extracellular matrix (ECM)-like fibrous scaffold architecture. The goal of this study was to fabricate and characterise poly-ε-caprolactone (PCL) fibrous scaffolds with 100, 200, and 300 μm pore sizes using MEW and determine the influence of pore size on human bone marrow stem cell (hMSC) adhesion, morphology, proliferation, mechanosignalling and osteogenesis. Each scaffold was fabricated with a fibre diameter of 4.01 ± 0.06 μm. The findings from this study highlight the enhanced osteogenic effects of controlled micro-scale fibre deposition using MEW, where the benefits of 100 μm square pores in comparison with larger pore sizes are illustrated, a pore size traditionally reported as a lower limit for osteogenesis. This suggests a lower pore size is optimal when hMSCs are seeded in a 3D ECM-like fibrous structure, with the 100 μm pore size optimal as it demonstrates the highest global stiffness, local fibre stiffness, highest seeding efficiency, maintains a spread cellular morphology, and significantly enhances hMSC collagen and mineral deposition. Similarly, this platform represents an effective in vitro model for the study of hMSC behaviour to determine the significant osteogenic benefits of controlling ECM-like fibrous BTE scaffold pore size using MEW.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
熔融电写纤维支架孔径对人骨髓干细胞成骨的影响
与当前骨移植材料相关的限制使得开发模拟天然组织用于骨修复的合成支架成为必要。支架参数,如孔径、孔互连性、纤维直径和纤维刚度,是复制天然环境所需的纤维骨组织工程(BTE)支架的关键参数。最佳值因材料、制造方法和电池类型而异。熔融电写(MEW)提供了对细胞外基质(ECM)样纤维支架结构的精确控制。本研究的目的是使用MEW制备和表征孔径为100、200和300μm的聚ε-己内酯(PCL)纤维支架,并测定孔径对人骨髓干细胞(hMSC)粘附、形态、增殖、机械信号和成骨的影响。每个支架的纤维直径为4.01±0.06μm。这项研究的结果强调了使用MEW控制微尺度纤维沉积增强的成骨效果,其中说明了100μm方形孔与较大孔径相比的好处,传统上认为孔径是成骨的下限。这表明,当hMSC接种在3D ECM样纤维结构中时,较低的孔径是最佳的,100μm的孔径是最优的,因为它表现出最高的整体刚度、局部纤维刚度、最高的接种效率,保持扩散的细胞形态,并显著增强hMSC胶原和矿物沉积。类似地,该平台为研究hMSC行为提供了一个有效的体外模型,以确定使用MEW控制ECM样纤维BTE支架孔径的显著成骨益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical materials
Biomedical materials 工程技术-材料科学:生物材料
CiteScore
6.70
自引率
7.50%
发文量
294
审稿时长
3 months
期刊介绍: The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare. Typical areas of interest include (but are not limited to): -Synthesis/characterization of biomedical materials- Nature-inspired synthesis/biomineralization of biomedical materials- In vitro/in vivo performance of biomedical materials- Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning- Microfluidic systems (including disease models): fabrication, testing & translational applications- Tissue engineering/regenerative medicine- Interaction of molecules/cells with materials- Effects of biomaterials on stem cell behaviour- Growth factors/genes/cells incorporated into biomedical materials- Biophysical cues/biocompatibility pathways in biomedical materials performance- Clinical applications of biomedical materials for cell therapies in disease (cancer etc)- Nanomedicine, nanotoxicology and nanopathology- Pharmacokinetic considerations in drug delivery systems- Risks of contrast media in imaging systems- Biosafety aspects of gene delivery agents- Preclinical and clinical performance of implantable biomedical materials- Translational and regulatory matters
期刊最新文献
A low-swelling alginate hydrogel with antibacterial hemostatic and radical scavenging properties for open wound healing. Evaluation of properties for Carbothane™ 3575A-based electrospun vascular grafts in vitro and in vivo. Migration and retention of human osteosarcoma cells in bioceramic graft with open channel architecture designed for bone tissue engineering. Enhancement of induction heating capability of bioactive SiO2–CaO–Na2O–P2O5 glass-ceramics by selective substitution with magnetite nanoparticles Antiproliferative efficacy and mechanism of action of garlic phytochemicals-functionalized gold nanoparticles in triple-negative breast cancer cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1