SELECTED SINGLE FACE TRACKING IN TECHNICALLY CHALLENGING DIFFERENT BACKGROUND VIDEO SEQUENCES USING COMBINED FEATURES

S. Ranganatha, Y. P. Gowramma, G. N. Karthik, A. Sharan
{"title":"SELECTED SINGLE FACE TRACKING IN TECHNICALLY CHALLENGING DIFFERENT BACKGROUND VIDEO SEQUENCES USING COMBINED FEATURES","authors":"S. Ranganatha, Y. P. Gowramma, G. N. Karthik, A. Sharan","doi":"10.21917/ijivp.2018.0271","DOIUrl":null,"url":null,"abstract":"The commonly identified limitations of video face trackers are, the inability to track human face in different background video sequences with the conditions like occlusion, low quality, abrupt motions and failing to track single face when it contain multiple faces. In this paper, we propose a novel algorithm to track human face in different background video sequences with the conditions listed above. The proposed algorithm describes an improved KLT tracker. We collect Eigen, FAST as well as HOG features and combine them together. The combined features are given to the tracker to track the face. The algorithm being proposed is tested on challenging datasets videos and measured for performance using the standard metrics.","PeriodicalId":30615,"journal":{"name":"ICTACT Journal on Image and Video Processing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICTACT Journal on Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21917/ijivp.2018.0271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The commonly identified limitations of video face trackers are, the inability to track human face in different background video sequences with the conditions like occlusion, low quality, abrupt motions and failing to track single face when it contain multiple faces. In this paper, we propose a novel algorithm to track human face in different background video sequences with the conditions listed above. The proposed algorithm describes an improved KLT tracker. We collect Eigen, FAST as well as HOG features and combine them together. The combined features are given to the tracker to track the face. The algorithm being proposed is tested on challenging datasets videos and measured for performance using the standard metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
选择单面跟踪技术上具有挑战性的不同背景视频序列使用组合特征
视频人脸跟踪器最常见的缺陷是在不同背景的视频序列中,由于遮挡、低质量、突然运动以及包含多个人脸时无法跟踪单个人脸等情况而无法跟踪人脸。在本文中,我们提出了一种新的算法来跟踪不同背景视频序列中的人脸。该算法描述了一种改进的KLT跟踪器。我们收集了Eigen, FAST和HOG特征,并将它们组合在一起。这些组合的特征被提供给跟踪器来跟踪人脸。提出的算法在具有挑战性的数据集视频上进行了测试,并使用标准指标测量了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
DIMENSIONALITY REDUCTION BASED CLASSIFICATION USING GENERATIVE ADVERSARIAL NETWORKS DATASET GENERATION ADVANCED COLOR COVERT IMAGE SHARING USING ARNOLD CAT MAP AND VISUAL CRYPTOGRAPHY STREETLIGHT OBJECTS RECOGNITION BY REGION AND HISTOGRAM FEATURES IN AN AUTONOMOUS VEHICLE SYSTEM SMART GESTURE USING REAL TIME OBJECT TRACKING CLASSIFICATION OF BRAIN TUMOR USING BEES SWARM OPTIMISATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1