CLASSIFICATION OF BRAIN TUMOR USING BEES SWARM OPTIMISATION

M. Ramkumar, M. Babu, R. Lakshminarayanan
{"title":"CLASSIFICATION OF BRAIN TUMOR USING BEES SWARM OPTIMISATION","authors":"M. Ramkumar, M. Babu, R. Lakshminarayanan","doi":"10.21917/ijivp.2019.0287","DOIUrl":null,"url":null,"abstract":"Nowadays, processing the medical image is a most significant diagnostic process. Usually RMI is used to detect the presence of and type of tumor. The following process is very complicated in the brain tumor classification. The treatment of medical images, such as image segmentation, image extraction, and image classification, takes various steps. Various types of properties such as intensity, forms and texture-based features are extracted from a segmented MRI image. The feature selection approach is employed to select a small subset of MRI image features that minimize redundancy and maximize target-related pertinence. This article uses the Bees Swarm Optimization (BSO) for the selection and the Neural Network Classifier to classify the type of tumor in present brain MRI images, and then takes online MRI images which contain brain tumor, then a machine-learning model.","PeriodicalId":30615,"journal":{"name":"ICTACT Journal on Image and Video Processing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICTACT Journal on Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21917/ijivp.2019.0287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, processing the medical image is a most significant diagnostic process. Usually RMI is used to detect the presence of and type of tumor. The following process is very complicated in the brain tumor classification. The treatment of medical images, such as image segmentation, image extraction, and image classification, takes various steps. Various types of properties such as intensity, forms and texture-based features are extracted from a segmented MRI image. The feature selection approach is employed to select a small subset of MRI image features that minimize redundancy and maximize target-related pertinence. This article uses the Bees Swarm Optimization (BSO) for the selection and the Neural Network Classifier to classify the type of tumor in present brain MRI images, and then takes online MRI images which contain brain tumor, then a machine-learning model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于蜂群优化的脑肿瘤分类
目前,医学图像处理是医学诊断的一个重要环节。通常RMI用于检测肿瘤的存在和类型。脑肿瘤的分类过程十分复杂。医学图像的处理,如图像分割、图像提取和图像分类,需要采取各种步骤。从分割的MRI图像中提取各种类型的属性,如强度、形状和基于纹理的特征。特征选择方法用于选择MRI图像特征的一个小子集,以最小化冗余和最大化目标相关的相关性。本文采用蜂群优化算法(BSO)进行选择,利用神经网络分类器对现有脑MRI图像中的肿瘤类型进行分类,然后选取含有脑肿瘤的在线MRI图像,建立机器学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
DIMENSIONALITY REDUCTION BASED CLASSIFICATION USING GENERATIVE ADVERSARIAL NETWORKS DATASET GENERATION ADVANCED COLOR COVERT IMAGE SHARING USING ARNOLD CAT MAP AND VISUAL CRYPTOGRAPHY STREETLIGHT OBJECTS RECOGNITION BY REGION AND HISTOGRAM FEATURES IN AN AUTONOMOUS VEHICLE SYSTEM SMART GESTURE USING REAL TIME OBJECT TRACKING CLASSIFICATION OF BRAIN TUMOR USING BEES SWARM OPTIMISATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1