Acrylamide Induced Oxidative Cellular Senescence in Embryonic Fibroblast Cell Line (NIH 3T3): A Protection by Carvacrol

IF 1 Q4 PHARMACOLOGY & PHARMACY Jundishapur Journal of Natural Pharmaceutical Products Pub Date : 2021-12-31 DOI:10.5812/jjnpp.109399
Mehdi Evazalipour, Pouya Safarzadeh Kozani, Pooria Safarzadeh Kozani, Sahar Shabani, Bahar Rezaei Soufi, E. Zamani
{"title":"Acrylamide Induced Oxidative Cellular Senescence in Embryonic Fibroblast Cell Line (NIH 3T3): A Protection by Carvacrol","authors":"Mehdi Evazalipour, Pouya Safarzadeh Kozani, Pooria Safarzadeh Kozani, Sahar Shabani, Bahar Rezaei Soufi, E. Zamani","doi":"10.5812/jjnpp.109399","DOIUrl":null,"url":null,"abstract":"Background: Stress-induced cellular senescence is a perpetual state of cell cycle arrest occurring in proliferating cells in response to stressful conditions. It is believed that oxidative stress plays a unique role in this process. As a reactive chemical compound that can induce oxidative stress, acrylamide is widely applied in several fields. Carvacrol is a liquid phenolic monoterpenoid found in essential oils of some plants and is known for its antioxidant and anticarcinogenic properties. Objectives: The current study aimed to evaluate the effects of carvacrol on oxidative stress and cellular senescence induced by acrylamide in the NIH 3T3 cell line. Methods: NIH 3T3 embryonic fibroblast cells were exposed to different concentrations of acrylamide, carvacrol, and H2O2 in a cell culture medium. The level of β-galactosidase (SA-β-gal) activity, as a marker of cellular senescence, was measured using staining and quantitative assays. Furthermore, to measure oxidative stress parameters, the content of glutathione and lipid peroxidation were determined. Results: Acrylamide could induce premature senescence evident by the elevated lipid peroxidation and SA-β-gal activity and declined cell viability and glutathione. Moreover, carvacrol showed beneficial effects on both acrylamide- and H2O2-induced cellular senescence by significantly reversing or subsiding the effect of oxidative stress and mediating its consequences. Conclusions: It can be concluded that carvacrol has protective effects against oxidative cellular senescence induced by acrylamide in the NIH 3T3 cell line.","PeriodicalId":17745,"journal":{"name":"Jundishapur Journal of Natural Pharmaceutical Products","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jundishapur Journal of Natural Pharmaceutical Products","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/jjnpp.109399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 2

Abstract

Background: Stress-induced cellular senescence is a perpetual state of cell cycle arrest occurring in proliferating cells in response to stressful conditions. It is believed that oxidative stress plays a unique role in this process. As a reactive chemical compound that can induce oxidative stress, acrylamide is widely applied in several fields. Carvacrol is a liquid phenolic monoterpenoid found in essential oils of some plants and is known for its antioxidant and anticarcinogenic properties. Objectives: The current study aimed to evaluate the effects of carvacrol on oxidative stress and cellular senescence induced by acrylamide in the NIH 3T3 cell line. Methods: NIH 3T3 embryonic fibroblast cells were exposed to different concentrations of acrylamide, carvacrol, and H2O2 in a cell culture medium. The level of β-galactosidase (SA-β-gal) activity, as a marker of cellular senescence, was measured using staining and quantitative assays. Furthermore, to measure oxidative stress parameters, the content of glutathione and lipid peroxidation were determined. Results: Acrylamide could induce premature senescence evident by the elevated lipid peroxidation and SA-β-gal activity and declined cell viability and glutathione. Moreover, carvacrol showed beneficial effects on both acrylamide- and H2O2-induced cellular senescence by significantly reversing or subsiding the effect of oxidative stress and mediating its consequences. Conclusions: It can be concluded that carvacrol has protective effects against oxidative cellular senescence induced by acrylamide in the NIH 3T3 cell line.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丙烯酰胺诱导的胚胎成纤维细胞系(NIH 3T3)氧化性细胞衰老:Carvacrol的保护作用
背景:应激诱导的细胞衰老是一种细胞周期停滞的永久状态,发生在增殖细胞对应激条件的反应中。人们认为氧化应激在这一过程中起着独特的作用。丙烯酰胺作为一种可诱导氧化应激的活性化合物,在多个领域得到了广泛的应用。香芹酚是一种液体酚类单萜类化合物,存在于一些植物的精油中,以其抗氧化和抗癌特性而闻名。目的:研究香芹酚对丙烯酰胺诱导的NIH 3T3细胞氧化应激和细胞衰老的影响。方法:将NIH 3T3胚胎成纤维细胞暴露于细胞培养基中不同浓度的丙烯酰胺、香芹酚和H2O2。用染色法和定量法测定细胞衰老标志β-半乳糖苷酶(SA-β-gal)活性水平。此外,通过测定谷胱甘肽和脂质过氧化的含量来测定氧化应激参数。结果:丙烯酰胺可诱导细胞过早衰老,表现为脂质过氧化和SA-β-gal活性升高,细胞活力和谷胱甘肽水平下降。此外,香芹酚对丙烯酰胺和h2o2诱导的细胞衰老都有有益的作用,可以显著逆转或减轻氧化应激的影响,并介导其后果。结论:香芹酚对丙烯酰胺诱导的NIH 3T3细胞氧化性衰老具有保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
26
期刊最新文献
Antileishmania, Immune Modulation and Apoptosis Induction by Astragalus ecbatanus Extract Against Leishmania tropica Chemical Constituents of the Artemisia ciniformis Aerial Parts Grown in the Northeast of Iran and Their Chemotaxonomic Significance Evaluation of the Protective and Healing Effects of Heracleum lasiopetalum Boiss on a Modified Acetic Acid-Induced Ulcerative Colitis Model in Rats Unveiling Therapeutic Effects of Thymbra spicata L. on Cystic Echinococcosis In Vivo Wound-Healing and Anti-Inflammatory Activities of Honey Produced by Melipona beecheii Bees
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1