Encapsulation of black cumin seed (Nigella sativa) oil by using inverse gelation method

IF 4.6 Q1 CHEMISTRY, APPLIED Food Hydrocolloids for Health Pub Date : 2022-12-01 DOI:10.1016/j.fhfh.2022.100089
Recep Palamutoğlu, Cemal Kasnak, Buket Özen
{"title":"Encapsulation of black cumin seed (Nigella sativa) oil by using inverse gelation method","authors":"Recep Palamutoğlu,&nbsp;Cemal Kasnak,&nbsp;Buket Özen","doi":"10.1016/j.fhfh.2022.100089","DOIUrl":null,"url":null,"abstract":"<div><p>Black cumin seed oil (BCO) is an important oil source in the food industry. Alginate capsules with aqueous cores can be made by reversing the gelation technique with alginate and CaCl<sub>2</sub>. The research aims to investigate the physicochemical properties of the capsules as well as to analyze the storage stability of BCO emulsions (emulgators; polyglycerol polyricinoleate (A) and sorbitan monooleate (B)) coated using the inverse gelation method. The peroxide value in group A increased rapidly on the first day and then declined without any significant difference between the third and sixth days (<em>p</em> &gt; 0.05). The peroxide value of group B increased significantly (<em>p</em> &lt; 0.05) on the first day and then declined like in the other groups. BCO (7.42 ± 0.16) had the lowest p-anisidine value at the beginning with the initial p-anisidine value of encapsulated BCO groups A and B (21.74 ± 0.84 and 11.48 ± 1.31, respectively) having significantly higher (<em>p</em> &lt; 0.05). The reverse gelation technique utilized in this study raised the p-anisidine value while lowering the peroxide value of the seed oil. The shelf life of black seed oil can be increased by using this technique in the industry.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266702592200036X/pdfft?md5=4019947294b54c76b4f5adc34cb5b8e2&pid=1-s2.0-S266702592200036X-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids for Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266702592200036X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Black cumin seed oil (BCO) is an important oil source in the food industry. Alginate capsules with aqueous cores can be made by reversing the gelation technique with alginate and CaCl2. The research aims to investigate the physicochemical properties of the capsules as well as to analyze the storage stability of BCO emulsions (emulgators; polyglycerol polyricinoleate (A) and sorbitan monooleate (B)) coated using the inverse gelation method. The peroxide value in group A increased rapidly on the first day and then declined without any significant difference between the third and sixth days (p > 0.05). The peroxide value of group B increased significantly (p < 0.05) on the first day and then declined like in the other groups. BCO (7.42 ± 0.16) had the lowest p-anisidine value at the beginning with the initial p-anisidine value of encapsulated BCO groups A and B (21.74 ± 0.84 and 11.48 ± 1.31, respectively) having significantly higher (p < 0.05). The reverse gelation technique utilized in this study raised the p-anisidine value while lowering the peroxide value of the seed oil. The shelf life of black seed oil can be increased by using this technique in the industry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反凝胶法包封黑孜然籽油
黑孜然籽油(BCO)是食品工业中重要的油源。用海藻酸盐和CaCl2逆转凝胶技术可制得带水芯的海藻酸盐胶囊。本研究旨在研究BCO胶囊的物理化学性质,并分析BCO乳剂(乳化剂)的储存稳定性;聚甘油聚蓖麻油酸酯(A)和山梨糖单油酸酯(B))用反凝胶法包被。A组的过氧化值在第1天迅速上升,然后下降,第3天和第6天无显著差异(p >0.05)。B组过氧化值显著升高(p <0.05),随后与其他组一样下降。BCO初始p-茴香胺值最低(7.42±0.16),A组和B组的p-茴香胺初始值分别为21.74±0.84和11.48±1.31,显著高于对照组(p <0.05)。本研究采用的反凝胶技术提高了对茴香胺值,同时降低了种子油的过氧化值。在工业上应用该技术可延长黑籽油的保质期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
61 days
期刊最新文献
Green synthesis of silver nanoparticles from mulberry leaf through hot melt extrusion: Enhanced antioxidant, antibacterial, anti-inflammatory, antidiabetic, and anticancer properties Silkworm pupae protein-based film incorporated with Catharanthus roseus leaf extract-based nanoparticles enhanced the lipid stability and microbial quality of cheddar cheese Re-processing of pharmaceutical herb residues using isolated probiotics from plant sources and their beneficial effects on diarrhea Investigating next-generation edible packaging: Protein-based films and coatings for delivering active compounds Recent advances on antimicrobial peptide and polysaccharide hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1