A Proposed Artificial Intelligence Model for Android-Malware Detection

IF 3.4 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Informatics Pub Date : 2023-08-18 DOI:10.3390/informatics10030067
Fatma Taher, Omar Al Fandi, Mousa Al Kfairy, Hussam Al Hamadi, S. Alrabaee
{"title":"A Proposed Artificial Intelligence Model for Android-Malware Detection","authors":"Fatma Taher, Omar Al Fandi, Mousa Al Kfairy, Hussam Al Hamadi, S. Alrabaee","doi":"10.3390/informatics10030067","DOIUrl":null,"url":null,"abstract":"There are a variety of reasons why smartphones have grown so pervasive in our daily lives. While their benefits are undeniable, Android users must be vigilant against malicious apps. The goal of this study was to develop a broad framework for detecting Android malware using multiple deep learning classifiers; this framework was given the name DroidMDetection. To provide precise, dynamic, Android malware detection and clustering of different families of malware, the framework makes use of unique methodologies built based on deep learning and natural language processing (NLP) techniques. When compared to other similar works, DroidMDetection (1) uses API calls and intents in addition to the common permissions to accomplish broad malware analysis, (2) uses digests of features in which a deep auto-encoder generates to cluster the detected malware samples into malware family groups, and (3) benefits from both methods of feature extraction and selection. Numerous reference datasets were used to conduct in-depth analyses of the framework. DroidMDetection’s detection rate was high, and the created clusters were relatively consistent, no matter the evaluation parameters. DroidMDetection surpasses state-of-the-art solutions MaMaDroid, DroidMalwareDetector, MalDozer, and DroidAPIMiner across all metrics we used to measure their effectiveness.","PeriodicalId":37100,"journal":{"name":"Informatics","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/informatics10030067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

There are a variety of reasons why smartphones have grown so pervasive in our daily lives. While their benefits are undeniable, Android users must be vigilant against malicious apps. The goal of this study was to develop a broad framework for detecting Android malware using multiple deep learning classifiers; this framework was given the name DroidMDetection. To provide precise, dynamic, Android malware detection and clustering of different families of malware, the framework makes use of unique methodologies built based on deep learning and natural language processing (NLP) techniques. When compared to other similar works, DroidMDetection (1) uses API calls and intents in addition to the common permissions to accomplish broad malware analysis, (2) uses digests of features in which a deep auto-encoder generates to cluster the detected malware samples into malware family groups, and (3) benefits from both methods of feature extraction and selection. Numerous reference datasets were used to conduct in-depth analyses of the framework. DroidMDetection’s detection rate was high, and the created clusters were relatively consistent, no matter the evaluation parameters. DroidMDetection surpasses state-of-the-art solutions MaMaDroid, DroidMalwareDetector, MalDozer, and DroidAPIMiner across all metrics we used to measure their effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种android恶意软件检测的人工智能模型
智能手机在我们的日常生活中如此普及有很多原因。虽然它们的好处是不可否认的,但Android用户必须警惕恶意应用。本研究的目标是开发一个广泛的框架,用于使用多个深度学习分类器检测Android恶意软件;这个框架被命名为DroidMDetection。为了提供精确、动态的Android恶意软件检测和不同恶意软件家族的聚类,该框架使用了基于深度学习和自然语言处理(NLP)技术的独特方法。与其他类似的工作相比,DroidMDetection(1)使用API调用和意图以及常见的权限来完成广泛的恶意软件分析,(2)使用深度自动编码器生成的特征摘要来将检测到的恶意软件样本聚类到恶意软件家族组中,(3)受益于特征提取和选择的两种方法。使用大量参考数据集对该框架进行深入分析。无论使用何种评价参数,DroidMDetection的检测率都很高,创建的聚类相对一致。DroidMDetection超越了最先进的解决方案MaMaDroid, DroidMalwareDetector, MalDozer和DroidAPIMiner,我们用来衡量其有效性的所有指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Informatics
Informatics Social Sciences-Communication
CiteScore
6.60
自引率
6.50%
发文量
88
审稿时长
6 weeks
期刊最新文献
Simulation of discrete control systems with parallelism of behavior Formal description model and conditions for detecting linked coupling faults of the memory devices A model of homographs automatic identification for the Belarusian language Ontological analysis in the problems of container applications threat modelling Closed Gordon – Newell network with single-line poles and exponentially limited request waiting time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1