Hisham Jashami , Jason C. Anderson , Hameed A. Mohammed , Douglas P. Cobb , David S. Hurwitz
{"title":"Contributing factors to right-turn crash severity at signalized intersections: An application of econometric modeling","authors":"Hisham Jashami , Jason C. Anderson , Hameed A. Mohammed , Douglas P. Cobb , David S. Hurwitz","doi":"10.1016/j.ijtst.2023.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>Motorists are required to interact with both roadway infrastructure and various users. The complexity of the driving task in certain scenarios can influence the frequency and severity of crashes. Turning vehicles at intersections, for example, pose a collision risk for both motorized and non-motorized road users. The primary goal of this paper is to investigate the underlying factors which contribute to right-turn crashes at signalized intersections. Five years of crash data across Oregon were collected. A random parameters binary logit model was developed to predict the likelihood of whether a crash resulted in an injury or fatality. It was found that 14 variables were statistically significant in contributing to crash severity. The results obtained show that dry conditions and a posted speed limit of 30 mi/hr or 35 mi/hr contributed to a higher percentage of severe crashes, while fixed-object crashes and snowy weather had a higher likelihood of resulting in no injury crashes. Time-of-day (9:00 p.m. to 6:00 a.m.), lighting conditions (dusk), gender (male driver), crash type (vehicle–pedestrian and rear-end), and driver-level crash cause (driver sped too fast for conditions, driver did not yield right-of-way, and driver disregarded the traffic control device) all led to an increase in probability of a fatal or injury crash. The vehicle–pedestrian conflict variable had the highest impact on increasing the probability of such a crash while turning right at a signalized intersection. This observation is important because right turns are often permitted during the pedestrian walk and clearance indications, and often drivers do not give right-of-way to pedestrians.</p></div>","PeriodicalId":52282,"journal":{"name":"International Journal of Transportation Science and Technology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2046043023000072/pdfft?md5=fd0e83f180d0ceabf126a939db8b49a5&pid=1-s2.0-S2046043023000072-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Transportation Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2046043023000072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Motorists are required to interact with both roadway infrastructure and various users. The complexity of the driving task in certain scenarios can influence the frequency and severity of crashes. Turning vehicles at intersections, for example, pose a collision risk for both motorized and non-motorized road users. The primary goal of this paper is to investigate the underlying factors which contribute to right-turn crashes at signalized intersections. Five years of crash data across Oregon were collected. A random parameters binary logit model was developed to predict the likelihood of whether a crash resulted in an injury or fatality. It was found that 14 variables were statistically significant in contributing to crash severity. The results obtained show that dry conditions and a posted speed limit of 30 mi/hr or 35 mi/hr contributed to a higher percentage of severe crashes, while fixed-object crashes and snowy weather had a higher likelihood of resulting in no injury crashes. Time-of-day (9:00 p.m. to 6:00 a.m.), lighting conditions (dusk), gender (male driver), crash type (vehicle–pedestrian and rear-end), and driver-level crash cause (driver sped too fast for conditions, driver did not yield right-of-way, and driver disregarded the traffic control device) all led to an increase in probability of a fatal or injury crash. The vehicle–pedestrian conflict variable had the highest impact on increasing the probability of such a crash while turning right at a signalized intersection. This observation is important because right turns are often permitted during the pedestrian walk and clearance indications, and often drivers do not give right-of-way to pedestrians.