Effect of Thermomechanical Densification Treatment on Abrasion Resistance of Five US Hardwoods

IF 1.1 4区 农林科学 Q3 FORESTRY Forest Products Journal Pub Date : 2022-05-01 DOI:10.13073/fpj-d-22-00028
Dusty Snow, L. Khademibami, Alan Sherrington, R. Shmulsky, Iris B. Montague, R. Ross, Xiping Wang
{"title":"Effect of Thermomechanical Densification Treatment on Abrasion Resistance of Five US Hardwoods","authors":"Dusty Snow, L. Khademibami, Alan Sherrington, R. Shmulsky, Iris B. Montague, R. Ross, Xiping Wang","doi":"10.13073/fpj-d-22-00028","DOIUrl":null,"url":null,"abstract":"\n The effect of thermomechanical densification treatment on the abrasion resistance of five hardwood species were investigated in this study. The species tested include ash (Fraxinus sp.), hickory (Carya sp.), red oak (Quercus sp.), sweetgum (Liquidambar styraciflua), and white oak (Quercus sp.). The abrasion test was performed according to the American Society of Testing and Materials standards. Ten specimens from each species were initially tested for abrasion resistance, and those specimens were then put through a thermomechanical densification process. The densification process consisted of bringing the heated platen up to a temperature of 176°C (350°F) on one surface and pressing the specimens at 6.9 MPa (1,000 Psi) for a period of 5 minutes. The densified specimens were then subject to the same abrasion testing procedure. All data were statistically analyzed by two-way analysis of variance (ANOVA) with the procedure of general linear mixed models. The results of this study indicated that densified hickory had the highest abrasion resistance among the five hardwood species tested.","PeriodicalId":12387,"journal":{"name":"Forest Products Journal","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Products Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13073/fpj-d-22-00028","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of thermomechanical densification treatment on the abrasion resistance of five hardwood species were investigated in this study. The species tested include ash (Fraxinus sp.), hickory (Carya sp.), red oak (Quercus sp.), sweetgum (Liquidambar styraciflua), and white oak (Quercus sp.). The abrasion test was performed according to the American Society of Testing and Materials standards. Ten specimens from each species were initially tested for abrasion resistance, and those specimens were then put through a thermomechanical densification process. The densification process consisted of bringing the heated platen up to a temperature of 176°C (350°F) on one surface and pressing the specimens at 6.9 MPa (1,000 Psi) for a period of 5 minutes. The densified specimens were then subject to the same abrasion testing procedure. All data were statistically analyzed by two-way analysis of variance (ANOVA) with the procedure of general linear mixed models. The results of this study indicated that densified hickory had the highest abrasion resistance among the five hardwood species tested.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热机械致密化处理对五种美国硬木耐磨性的影响
研究了热机械致密化处理对五种硬木耐磨性的影响。测试的物种包括白蜡树(Fraxinus sp.)、山核桃树(Carya sp。最初对每个物种的10个试样进行耐磨性测试,然后对这些试样进行热机械致密化处理。致密化过程包括将加热的压板在一个表面上加热至176°C(350°F)的温度,并在6.9 MPa(1000 Psi)的压力下压制试样5分钟。然后对致密试样进行相同的磨损试验程序。所有数据均采用一般线性混合模型的程序,通过双向方差分析(ANOVA)进行统计分析。研究结果表明,在五种硬木中,致密山核桃的耐磨性最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Forest Products Journal
Forest Products Journal 工程技术-材料科学:纸与木材
CiteScore
2.10
自引率
11.10%
发文量
30
审稿时长
6-12 weeks
期刊介绍: Forest Products Journal (FPJ) is the source of information for industry leaders, researchers, teachers, students, and everyone interested in today''s forest products industry. The Forest Products Journal is well respected for publishing high-quality peer-reviewed technical research findings at the applied or practical level that reflect the current state of wood science and technology. Articles suitable as Technical Notes are brief notes (generally 1,200 words or less) that describe new or improved equipment or techniques; report on findings produced as by-products of major studies; or outline progress to date on long-term projects.
期刊最新文献
Validating LORCAT, the Log Recovery Analysis Tool Chinese Consumers’ Attitudes Toward Certified Wood Products Design and Evaluation of a Shear Analogy Tool for Custom Cross-Laminated Timber (CLT) Panels Made from Various Wood Species Use and Future Development of Optical Measurement Technology in the Study of Wood Surface Roughness CiteSpace-Based Scientometric Analysis (2003 through 2022) Impact of Growth Characteristics on Properties of 2 by 8 Southern Yellow Pine Structural Lumber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1