A gradient projection method for semi-supervised hypergraph clustering problems

IF 0.4 4区 数学 Q4 MATHEMATICS, APPLIED Pacific Journal of Optimization Pub Date : 2023-06-20 DOI:10.61208/pjo-2023-025
Jingya Chang, Dongdong Liu, Min Xi
{"title":"A gradient projection method for semi-supervised hypergraph clustering problems","authors":"Jingya Chang, Dongdong Liu, Min Xi","doi":"10.61208/pjo-2023-025","DOIUrl":null,"url":null,"abstract":"Semi-supervised clustering problems focus on clustering data with labels. In this paper,we consider the semi-supervised hypergraph problems. We use the hypergraph related tensor to construct an orthogonal constrained optimization model. The optimization problem is solved by a retraction method, which employs the polar decomposition to map the gradient direction in the tangent space to the Stefiel manifold. A nonmonotone curvilinear search is implemented to guarantee reduction in the objective function value. Convergence analysis demonstrates that the first order optimality condition is satisfied at the accumulation point. Experiments on synthetic hypergraph and hypergraph given by real data demonstrate the effectivity of our method.","PeriodicalId":49716,"journal":{"name":"Pacific Journal of Optimization","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.61208/pjo-2023-025","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Semi-supervised clustering problems focus on clustering data with labels. In this paper,we consider the semi-supervised hypergraph problems. We use the hypergraph related tensor to construct an orthogonal constrained optimization model. The optimization problem is solved by a retraction method, which employs the polar decomposition to map the gradient direction in the tangent space to the Stefiel manifold. A nonmonotone curvilinear search is implemented to guarantee reduction in the objective function value. Convergence analysis demonstrates that the first order optimality condition is satisfied at the accumulation point. Experiments on synthetic hypergraph and hypergraph given by real data demonstrate the effectivity of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半监督超图聚类问题的梯度投影方法
半监督聚类问题主要关注带标签的数据聚类问题。本文研究一类半监督超图问题。利用超图相关张量构造了一个正交约束优化模型。利用极坐标分解将切空间中的梯度方向映射到stefield流形上,采用缩回法求解优化问题。采用非单调曲线搜索来保证目标函数值的减小。收敛性分析表明,该算法在累加点处满足一阶最优性条件。在合成超图和实际数据给出的超图上的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pacific Journal of Optimization
Pacific Journal of Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-MATHEMATICS, APPLIED
自引率
0.00%
发文量
0
审稿时长
3 months
期刊最新文献
A gradient projection method for semi-supervised hypergraph clustering problems Beyond Monotone Variational Inequalities: Solution Methods and Iteration Complexities A Projection Algorithm for Non-convex Split Feasibility Problem Splitting Method for Support Vector Machine with Lower Semi-continuous Loss D-gap functions and error bounds for vector equilibrium problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1