{"title":"CFD ANALYSIS OF PEG 400 BASED NANOFLUIDS","authors":"E. Cherecheş, M. Cherecheș, Liviu Zupcu, A. Minea","doi":"10.54684/ijmmt.2022.14.3.33","DOIUrl":null,"url":null,"abstract":"In the last years, a lot of research is dedicated to development of new heat transfer fluids. Phase change materials (PCM) are considered a new generation of heat transfer fluids. A convenient tool to verify the efficiency of a fluid PCM for different practical applications is the simulation approach. In order for such an analysis to be possible, it is necessary to correctly and completely describe the fluids, which supposes the knowledge of the laws of variation of the thermophysical properties with temperature. In many industrial applications, heat transfer is one of the most significant process, but the development of efficient equipment is limited by the low thermal conductivity of conventional heat transfer fluids. Complex CFD (computational fluid dynamics) programs, such as ANSYS Fluent, are capable of replacing experimental results. Therefore, based on previous experimental data, a numerical study on heat transfer will be performed, involving laminar flow conditions. In this numerical study, a number of nanofluids based on PEG 400 (polyethylene glycol PEG 400) and two type of nanoparticles (Al2O3 and ZnO), have been implemented in a commercial code to analyze their behavior at heating. Their heating behavior must be understood under different conditions or factors, such as concentration, temperature, pressure, flow conditions, heating systems and flow geometry. In conclusion, PEG 400 based nanofluids is considered to have a high potential for a number of practical applications (for example for their possible use in thermal energy storage), but further studies are needed, as well as the intensification of numerical and experimental research because no applied studies have been identified in the literature.","PeriodicalId":38009,"journal":{"name":"International Journal of Modern Manufacturing Technologies","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Manufacturing Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54684/ijmmt.2022.14.3.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In the last years, a lot of research is dedicated to development of new heat transfer fluids. Phase change materials (PCM) are considered a new generation of heat transfer fluids. A convenient tool to verify the efficiency of a fluid PCM for different practical applications is the simulation approach. In order for such an analysis to be possible, it is necessary to correctly and completely describe the fluids, which supposes the knowledge of the laws of variation of the thermophysical properties with temperature. In many industrial applications, heat transfer is one of the most significant process, but the development of efficient equipment is limited by the low thermal conductivity of conventional heat transfer fluids. Complex CFD (computational fluid dynamics) programs, such as ANSYS Fluent, are capable of replacing experimental results. Therefore, based on previous experimental data, a numerical study on heat transfer will be performed, involving laminar flow conditions. In this numerical study, a number of nanofluids based on PEG 400 (polyethylene glycol PEG 400) and two type of nanoparticles (Al2O3 and ZnO), have been implemented in a commercial code to analyze their behavior at heating. Their heating behavior must be understood under different conditions or factors, such as concentration, temperature, pressure, flow conditions, heating systems and flow geometry. In conclusion, PEG 400 based nanofluids is considered to have a high potential for a number of practical applications (for example for their possible use in thermal energy storage), but further studies are needed, as well as the intensification of numerical and experimental research because no applied studies have been identified in the literature.
期刊介绍:
The main topics of the journal are: Micro & Nano Technologies; Rapid Prototyping Technologies; High Speed Manufacturing Processes; Ecological Technologies in Machine Manufacturing; Manufacturing and Automation; Flexible Manufacturing; New Manufacturing Processes; Design, Control and Exploitation; Assembly and Disassembly; Cold Forming Technologies; Optimization of Experimental Research and Manufacturing Processes; Maintenance, Reliability, Life Cycle Time and Cost; CAD/CAM/CAE/CAX Integrated Systems; Composite Materials Technologies; Non-conventional Technologies; Concurrent Engineering; Virtual Manufacturing; Innovation, Creativity and Industrial Development.