Architecting 3D continuous C/CuVO3@Cu composite anode for lithium ion storage

IF 2.7 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Surface Innovations Pub Date : 2022-02-16 DOI:10.1680/jsuin.21.00083
Jinlong Gou, Zhijun Qiao, Zhen-Yang Yu, Shihao Sun, Chuanqi Li, Wei-jie Li, Jun Wang, Nan Wang, Zhijia Zhang, Yong Jiang
{"title":"Architecting 3D continuous C/CuVO3@Cu composite anode for lithium ion storage","authors":"Jinlong Gou, Zhijun Qiao, Zhen-Yang Yu, Shihao Sun, Chuanqi Li, Wei-jie Li, Jun Wang, Nan Wang, Zhijia Zhang, Yong Jiang","doi":"10.1680/jsuin.21.00083","DOIUrl":null,"url":null,"abstract":"Vanadium-based oxides with high theoretical capacity are an alternative anode for lithium-ion batteries, but they are still limited by the poor conductivity, large volume change and low active material mass loading. Herein, a 3D continuous C/CuVO3@Cu composite anode with high CuVO3 mass loading is synthesized by the combination of high energy ball milling, nonsolvent induced phase separation and heat treatment. The Cu framework can enhance electron/ion conductivity in coordination with amorphous carbon. Besides, the macropores channels in Cu framework can provide a buffer space for the volume expansion of active material CuVO3 during lithiation/delithiation. As a result, this 3D continuous C/CuVO3@Cu composite anode achieves a high CuVO3 mass loading about 3.8 mg cm−2, delivering a reversible capacity of 479 mAh g−1 at 100 mA g−1 after 120 cycles. More importantly, the long lifespan is achieved with a reversible capacity of 268 mAh g−1 even after 1700 cycles at a high current density of 1000 mA g−1, demonstrating the excellent cycle performance. This work provides a way to develop 3D continuous composite materials anode with extraordinary electrochemistry performance for next generation energy storage devices.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.21.00083","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3

Abstract

Vanadium-based oxides with high theoretical capacity are an alternative anode for lithium-ion batteries, but they are still limited by the poor conductivity, large volume change and low active material mass loading. Herein, a 3D continuous C/CuVO3@Cu composite anode with high CuVO3 mass loading is synthesized by the combination of high energy ball milling, nonsolvent induced phase separation and heat treatment. The Cu framework can enhance electron/ion conductivity in coordination with amorphous carbon. Besides, the macropores channels in Cu framework can provide a buffer space for the volume expansion of active material CuVO3 during lithiation/delithiation. As a result, this 3D continuous C/CuVO3@Cu composite anode achieves a high CuVO3 mass loading about 3.8 mg cm−2, delivering a reversible capacity of 479 mAh g−1 at 100 mA g−1 after 120 cycles. More importantly, the long lifespan is achieved with a reversible capacity of 268 mAh g−1 even after 1700 cycles at a high current density of 1000 mA g−1, demonstrating the excellent cycle performance. This work provides a way to develop 3D continuous composite materials anode with extraordinary electrochemistry performance for next generation energy storage devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建3D连续C/CuVO3@Cu复合阳极锂离子存储
钒基氧化物具有较高的理论容量,是锂离子电池的一种替代阳极,但其电导率差、体积变化大、活性物质质量负荷低等限制了其性能。本文采用高能球磨、非溶剂诱导相分离和热处理相结合的方法,合成了具有高CuVO3质量负载的三维连续C/CuVO3@Cu复合阳极。铜骨架与非晶碳配合可以提高电子/离子的导电性。此外,Cu骨架中的大孔隙通道可以为活性物质CuVO3在锂化/脱蚀过程中的体积膨胀提供缓冲空间。因此,这种3D连续C/CuVO3@Cu复合阳极实现了高CuVO3质量负载,约3.8 mg cm - 2,在100 mA g - 1循环120次后提供479 mAh g - 1的可逆容量。更重要的是,即使在1000 mA g−1的高电流密度下,经过1700次循环后,其可逆容量仍达到268 mAh g−1,证明了优异的循环性能。本研究为下一代储能器件开发具有优异电化学性能的三维连续复合材料阳极提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface Innovations
Surface Innovations CHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍: The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace. Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.
期刊最新文献
Enhanced photoelectrocatalytic performance of Ti4O7 ceramic electrodes loaded with PbO2 for wastewater degradation Study on UV-cured antimicrobial coatings with epoxy resin quaternary ammonium salt Study of excitation wavelength dependent photoluminescence and electrical conductivity on chemically synthesized metal semiconductor copper oxide nanorods An overview of green and sustainable polymeric coatings Fabrication of TiO2@Cu mesh with impressive hydrophobic surface for electromagnetic interference shielding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1