首页 > 最新文献

Surface Innovations最新文献

英文 中文
Enhanced photoelectrocatalytic performance of Ti4O7 ceramic electrodes loaded with PbO2 for wastewater degradation 增强负载 PbO2 的 Ti4O7 陶瓷电极在废水降解中的光电催化性能
IF 3.5 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-03-25 DOI: 10.1680/jsuin.23.00071
Xinyu Li, Md Azharul Hossain, Zeqi Jiang, Yinghuan Fu, Hongchao Ma
Photoelectrocatalytic oxidation technology (PEC) is considered to be an efficient process for the treatment of organic wastewater, and its performance depends on the characteristics of the PEC photoanodes. Therefore, the construction of heterogeneous nanostructured photoelectrodes based on suitable semiconductor materials for fast-induced carrier transfer efficiency is essential for the high-performance PEC technique. Herein, the Ti4O7/PbO2 ceramic photoelectrode with efficient PEC performance was synthesized by coupling PbO2 nanospheres with Ti4O7 via a hydrothermal method. To maximize the PEC performance of the ceramic electrodes, the Ti4O7/PbO2 nano-heterostructures were optimized by modulating the hydrothermal temperature. The optimized ceramic electrodes possessed a low Tafel slope, low charge transfer resistance, and good photocurrent response.It exhibited efficient PEC activity (ca. 92.21 %) for the degradation of reactive brilliant blue KN-R. The efficient PEC performance of Ti4O7/PbO2-110 arises from the formation of a type II heterojunction between Ti4O7 and PbO2, which achieves efficient photogenerated carrier separation and facilitates the formation of intermediate active species. This work not only validates the efficient performance of Ti4O7/PbO2-110 for PEC water purification but also provides a reference strategy for the preparation of heterostructured ceramic photoelectrodes with high PEC efficiency.
光电催化氧化技术(PEC)被认为是一种处理有机废水的高效工艺,其性能取决于 PEC 光阳极的特性。因此,以合适的半导体材料为基础构建异质纳米结构光电极,以实现快速诱导载流子转移效率,对于高性能 PEC 技术至关重要。本文通过水热法将 PbO2 纳米球与 Ti4O7 结合,合成了具有高效 PEC 性能的 Ti4O7/PbO2 陶瓷光电极。为了最大限度地提高陶瓷电极的 PEC 性能,通过调节水热温度对 Ti4O7/PbO2 纳米异质结构进行了优化。优化后的陶瓷电极具有较低的塔菲尔斜率、较低的电荷转移电阻和良好的光电流响应,在降解活性艳蓝 KN-R 方面表现出高效的 PEC 活性(约 92.21%)。Ti4O7/PbO2-110 的高效 PEC 性能源于 Ti4O7 和 PbO2 之间形成的 II 型异质结,它实现了高效的光生载流子分离,并促进了中间活性物种的形成。这项工作不仅验证了 Ti4O7/PbO2-110 在 PEC 水净化中的高效性能,还为制备具有高 PEC 效率的异质结构陶瓷光电极提供了参考策略。
{"title":"Enhanced photoelectrocatalytic performance of Ti4O7 ceramic electrodes loaded with PbO2 for wastewater degradation","authors":"Xinyu Li, Md Azharul Hossain, Zeqi Jiang, Yinghuan Fu, Hongchao Ma","doi":"10.1680/jsuin.23.00071","DOIUrl":"https://doi.org/10.1680/jsuin.23.00071","url":null,"abstract":"Photoelectrocatalytic oxidation technology (PEC) is considered to be an efficient process for the treatment of organic wastewater, and its performance depends on the characteristics of the PEC photoanodes. Therefore, the construction of heterogeneous nanostructured photoelectrodes based on suitable semiconductor materials for fast-induced carrier transfer efficiency is essential for the high-performance PEC technique. Herein, the Ti<sub>4</sub>O<sub>7</sub>/PbO<sub>2</sub> ceramic photoelectrode with efficient PEC performance was synthesized by coupling PbO<sub>2</sub> nanospheres with Ti<sub>4</sub>O<sub>7</sub> via a hydrothermal method. To maximize the PEC performance of the ceramic electrodes, the Ti<sub>4</sub>O<sub>7</sub>/PbO<sub>2</sub> nano-heterostructures were optimized by modulating the hydrothermal temperature. The optimized ceramic electrodes possessed a low Tafel slope, low charge transfer resistance, and good photocurrent response.It exhibited efficient PEC activity (ca. 92.21 %) for the degradation of reactive brilliant blue KN-R. The efficient PEC performance of Ti<sub>4</sub>O<sub>7</sub>/PbO<sub>2</sub>-110 arises from the formation of a type II heterojunction between Ti<sub>4</sub>O<sub>7</sub> and PbO<sub>2</sub>, which achieves efficient photogenerated carrier separation and facilitates the formation of intermediate active species. This work not only validates the efficient performance of Ti<sub>4</sub>O<sub>7</sub>/PbO<sub>2</sub>-110 for PEC water purification but also provides a reference strategy for the preparation of heterostructured ceramic photoelectrodes with high PEC efficiency.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":"18 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140316653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on UV-cured antimicrobial coatings with epoxy resin quaternary ammonium salt 环氧树脂季铵盐紫外光固化抗菌涂料的研究
IF 3.5 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-12-04 DOI: 10.1680/jsuin.23.00072
Jiaxuan He, Yan Xu, Xiaoming Tan, Yiming Hu, Jiesheng Liu, Qinyi Liu
This study aims to develop light-cured antimicrobial coatings were developed by dispersing epoxy resin F51-Quaternary Ammonium Salts (F51-QAS) as antimicrobial agents in light-cured emulsions. The molecular structures of these F51-QAS were analyzed using infrared spectroscopy. Thermogravimetric analysis was performed to evaluate the thermal stability of the antimicrobial coatings. Contact angle testing was conducted to investigate the hygroscopic wettability of the coatings. Mechanical properties such as pencil hardness, adhesion strength, flexibility, and impact resistance were evaluated. Antimicrobial rate experiments were conducted to examine the antimicrobial properties of the coatings. The antimicrobial properties were examined through rate experiments against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Results showed that when the F51-QAS content was at 2.7%, the light-cured antimicrobial coatings exhibited excellent overall performance with 100% antimicrobial rate.
以环氧树脂f51 -季铵盐(F51-QAS)为分散剂,在光固化乳剂中制备光固化抗菌涂料。利用红外光谱分析了这些F51-QAS的分子结构。采用热重法评价抗菌涂层的热稳定性。通过接触角测试研究了涂层的吸湿性。机械性能,如铅笔硬度,粘接强度,柔韧性和抗冲击性进行了评估。通过抗菌率实验考察了涂层的抗菌性能。通过对大肠杆菌(E. coli)和金黄色葡萄球菌(S. aureus)的抑菌率实验考察了其抗菌性能。结果表明,当F51-QAS含量为2.7%时,光固化抗菌涂层整体性能优异,抗菌率为100%。
{"title":"Study on UV-cured antimicrobial coatings with epoxy resin quaternary ammonium salt","authors":"Jiaxuan He, Yan Xu, Xiaoming Tan, Yiming Hu, Jiesheng Liu, Qinyi Liu","doi":"10.1680/jsuin.23.00072","DOIUrl":"https://doi.org/10.1680/jsuin.23.00072","url":null,"abstract":"This study aims to develop light-cured antimicrobial coatings were developed by dispersing epoxy resin F51-Quaternary Ammonium Salts (F51-QAS) as antimicrobial agents in light-cured emulsions. The molecular structures of these F51-QAS were analyzed using infrared spectroscopy. Thermogravimetric analysis was performed to evaluate the thermal stability of the antimicrobial coatings. Contact angle testing was conducted to investigate the hygroscopic wettability of the coatings. Mechanical properties such as pencil hardness, adhesion strength, flexibility, and impact resistance were evaluated. Antimicrobial rate experiments were conducted to examine the antimicrobial properties of the coatings. The antimicrobial properties were examined through rate experiments against <i>Escherichia coli</i> (<i>E. coli</i>) and <i>Staphylococcus aureus</i> (<i>S. aureus</i>). Results showed that when the F51-QAS content was at 2.7%, the light-cured antimicrobial coatings exhibited excellent overall performance with 100% antimicrobial rate.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" 43","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138493761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of excitation wavelength dependent photoluminescence and electrical conductivity on chemically synthesized metal semiconductor copper oxide nanorods 化学合成金属半导体氧化铜纳米棒的激发波长依赖性光致发光和电导率研究
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-11-10 DOI: 10.1680/jsuin.23.00056
Amardeep Bajwa, Harpreet Kaur, Sanjeev Kumar, Gurjinder Singh
This research work reports the synthesis of copper (II) oxide (CuO) nanoparticles using the wet chemical co-precipitation method. The synthesised nanoparticles were characterised using ultraviolet–visible spectroscopy, X-ray diffraction, field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy and high-resolution transmission electron microscopy in terms of absorption, crystal structure and size, morphology and elemental composition, and particle size. The existence of functional groups was verified by Fourier transform infrared spectroscopy. The synthesised copper (II) oxide nanoparticles showed an absorption peak at 397 nm, and a Tauc’s plot study showed a band-gap energy of 3.2 eV. The effects of varied excitation energies – namely, 3.81 and 3.54 eV – on the emission spectra of rod-shaped nanoparticles were assessed through photoluminescence spectroscopy, and the release of red, orange, green, violet and yellow colours was observed. The voltage–current characteristics of nanoparticle pellets were measured using a two-probe technique. The increase in the direct-current electrical conductivity of pellets heated at 100 and 200°C was ascertained. Overall, this research work provides valuable insights into the electronic properties of copper (II) oxide nanoparticles, which could have potential applications in various fields such as catalysis and electronics.
本研究报道了采用湿化学共沉淀法合成氧化铜纳米粒子。利用紫外可见光谱、x射线衍射、场发射扫描电镜和能量色散x射线能谱以及高分辨率透射电镜对合成的纳米颗粒进行了吸收、晶体结构和尺寸、形貌和元素组成以及粒径的表征。傅里叶红外光谱验证了官能团的存在。合成的氧化铜纳米粒子在397 nm处有一个吸收峰,Tauc图研究显示其能带能为3.2 eV。利用光致发光光谱法研究了不同激发能(3.81 eV和3.54 eV)对棒状纳米颗粒发射光谱的影响,并观察了红、橙、绿、紫和黄等颜色的释放。采用双探针技术测量了纳米颗粒的电压-电流特性。测定了球团在100℃和200℃加热时直流电导电性的增加。总的来说,这项研究工作为铜(II)氧化物纳米粒子的电子性质提供了有价值的见解,这可能在催化和电子等各个领域有潜在的应用。
{"title":"Study of excitation wavelength dependent photoluminescence and electrical conductivity on chemically synthesized metal semiconductor copper oxide nanorods","authors":"Amardeep Bajwa, Harpreet Kaur, Sanjeev Kumar, Gurjinder Singh","doi":"10.1680/jsuin.23.00056","DOIUrl":"https://doi.org/10.1680/jsuin.23.00056","url":null,"abstract":"This research work reports the synthesis of copper (II) oxide (CuO) nanoparticles using the wet chemical co-precipitation method. The synthesised nanoparticles were characterised using ultraviolet–visible spectroscopy, X-ray diffraction, field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy and high-resolution transmission electron microscopy in terms of absorption, crystal structure and size, morphology and elemental composition, and particle size. The existence of functional groups was verified by Fourier transform infrared spectroscopy. The synthesised copper (II) oxide nanoparticles showed an absorption peak at 397 nm, and a Tauc’s plot study showed a band-gap energy of 3.2 eV. The effects of varied excitation energies – namely, 3.81 and 3.54 eV – on the emission spectra of rod-shaped nanoparticles were assessed through photoluminescence spectroscopy, and the release of red, orange, green, violet and yellow colours was observed. The voltage–current characteristics of nanoparticle pellets were measured using a two-probe technique. The increase in the direct-current electrical conductivity of pellets heated at 100 and 200°C was ascertained. Overall, this research work provides valuable insights into the electronic properties of copper (II) oxide nanoparticles, which could have potential applications in various fields such as catalysis and electronics.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":"71 20","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135088050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An overview of green and sustainable polymeric coatings 绿色可持续聚合物涂料概述
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-11-09 DOI: 10.1680/jsuin.23.00043
Maryam Jouyandeh, Farzad Seidi, Sajjad Habibzadeh, Mohamed S Hasanin, Paulina Wiśniewska, Navid Rabiee, Henri Vahabi, Seeram Ramakrishna, Mohammad Reza Saeb
Synthetic polymers have to be replaced with green counterparts for sustainability needs. Green and sustainable polymeric coatings have progressively undergone development, as functional and protective materials for myriad applications ranging from packaging to biomedicine. Despite such innovative and environmental privileges, they are not adequately competitive in terms of properties to displace synthetic polymeric coatings. Functionalization of the surface and/or the bulk of the green polymeric coatings by functional groups, natural polymers, nanoparticles, crosslinking agents, anti-fouling precursors, and synthetic polymers can strengthen their properties and enlarge their performance window. However, definitions and terms related to green and sustainable coatings have not been systematically addressed. Biomass-, plant oil-, carbohydrate-, protein- and microbial-based polymeric coatings are the main classes of sustainable polymeric coatings briefly overviewed herein. The technological bottlenecks towards commercialization of sustainable coatings and films are also highlighted.
为了可持续发展的需要,合成聚合物必须被绿色聚合物所取代。从包装到生物医药,绿色和可持续聚合物涂料作为功能性和保护性材料的应用日益广泛。尽管具有这样的创新和环保优势,但它们在取代合成聚合物涂料的性能方面并没有足够的竞争力。通过官能团、天然聚合物、纳米颗粒、交联剂、防污前体和合成聚合物对绿色聚合物涂料的表面和/或主体进行功能化,可以增强其性能并扩大其性能窗口。然而,与绿色和可持续涂料相关的定义和术语尚未系统地解决。本文简要介绍了生物质基、植物油基、碳水化合物基、蛋白质基和微生物基聚合物涂料的主要种类。可持续涂料和薄膜商业化的技术瓶颈也得到了强调。
{"title":"An overview of green and sustainable polymeric coatings","authors":"Maryam Jouyandeh, Farzad Seidi, Sajjad Habibzadeh, Mohamed S Hasanin, Paulina Wiśniewska, Navid Rabiee, Henri Vahabi, Seeram Ramakrishna, Mohammad Reza Saeb","doi":"10.1680/jsuin.23.00043","DOIUrl":"https://doi.org/10.1680/jsuin.23.00043","url":null,"abstract":"Synthetic polymers have to be replaced with green counterparts for sustainability needs. Green and sustainable polymeric coatings have progressively undergone development, as functional and protective materials for myriad applications ranging from packaging to biomedicine. Despite such innovative and environmental privileges, they are not adequately competitive in terms of properties to displace synthetic polymeric coatings. Functionalization of the surface and/or the bulk of the green polymeric coatings by functional groups, natural polymers, nanoparticles, crosslinking agents, anti-fouling precursors, and synthetic polymers can strengthen their properties and enlarge their performance window. However, definitions and terms related to green and sustainable coatings have not been systematically addressed. Biomass-, plant oil-, carbohydrate-, protein- and microbial-based polymeric coatings are the main classes of sustainable polymeric coatings briefly overviewed herein. The technological bottlenecks towards commercialization of sustainable coatings and films are also highlighted.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135242938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of TiO2@Cu mesh with impressive hydrophobic surface for electromagnetic interference shielding 制造TiO2@Cu网与令人印象深刻的疏水表面电磁干扰屏蔽
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-11-08 DOI: 10.1680/jsuin.23.00067
Yongchao Yuan, Yangyang He, Shouxin Shi, Degang Wu, Guanda Yang
This study investigated the surface modification of copper mesh using modified titanium dioxide (TiO 2 ) coatings to enhance its surface hydrophobic properties while preserving electromagnetic interference (EMI) shielding effectiveness. Silicon-coupling-agent-treated titanium dioxide particles were employed to create micro/nanostructured superhydrophobic coatings. The deposition times were found to influence the coating distribution, pore filling and surface hydrophobicity. S-TiO 2 @Cu mesh with a single layer of modified titanium dioxide coating exhibited the highest water contact angle compared with T-TiO 2 @Cu mesh with triple layer coatings and the original O-TiO 2 @Cu mesh. The superior self-cleaning performance and robust wear resistance of the hydrophobic coatings for S-TiO 2 @Cu mesh were revealed. In addition, both S-TiO 2 @Cu mesh and T-TiO 2 @Cu mesh exhibited satisfactory EMI-shielding efficiency without compromising the intrinsic properties of the copper mesh. These findings provide practical insights into surface modification of copper mesh substrates, emphasizing the balance between surface properties and EMI shielding. The hydrophobic coatings hold promise for multifunctional applications, offering enhanced surface properties without compromising EMI-shielding performance.
本研究利用改性二氧化钛(tio2)涂层对铜网进行表面改性,以增强其表面疏水性,同时保持其屏蔽电磁干扰(EMI)的效果。采用硅偶联剂处理二氧化钛颗粒制备微/纳米超疏水涂层。沉积时间对镀层分布、孔隙填充和表面疏水性均有影响。与具有三层涂层的t - tio2 @Cu网和原始o - tio2 @Cu网相比,具有单层改性二氧化钛涂层的s - tio2 @Cu网具有最高的水接触角。结果表明,s - tio2 @Cu网疏水涂层具有优异的自清洁性能和良好的耐磨性。此外,s - tio2 @Cu网和t - tio2 @Cu网在不影响铜网固有性能的情况下都具有良好的emi屏蔽效率。这些发现为铜网基板的表面改性提供了实用的见解,强调了表面性能和电磁干扰屏蔽之间的平衡。疏水涂层有望用于多功能应用,在不影响emi屏蔽性能的情况下提供增强的表面性能。
{"title":"Fabrication of TiO<sub>2</sub>@Cu mesh with impressive hydrophobic surface for electromagnetic interference shielding","authors":"Yongchao Yuan, Yangyang He, Shouxin Shi, Degang Wu, Guanda Yang","doi":"10.1680/jsuin.23.00067","DOIUrl":"https://doi.org/10.1680/jsuin.23.00067","url":null,"abstract":"This study investigated the surface modification of copper mesh using modified titanium dioxide (TiO 2 ) coatings to enhance its surface hydrophobic properties while preserving electromagnetic interference (EMI) shielding effectiveness. Silicon-coupling-agent-treated titanium dioxide particles were employed to create micro/nanostructured superhydrophobic coatings. The deposition times were found to influence the coating distribution, pore filling and surface hydrophobicity. S-TiO 2 @Cu mesh with a single layer of modified titanium dioxide coating exhibited the highest water contact angle compared with T-TiO 2 @Cu mesh with triple layer coatings and the original O-TiO 2 @Cu mesh. The superior self-cleaning performance and robust wear resistance of the hydrophobic coatings for S-TiO 2 @Cu mesh were revealed. In addition, both S-TiO 2 @Cu mesh and T-TiO 2 @Cu mesh exhibited satisfactory EMI-shielding efficiency without compromising the intrinsic properties of the copper mesh. These findings provide practical insights into surface modification of copper mesh substrates, emphasizing the balance between surface properties and EMI shielding. The hydrophobic coatings hold promise for multifunctional applications, offering enhanced surface properties without compromising EMI-shielding performance.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135340578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of forming directions on surface quality of 316L stainless steel produced by selective laser melting additive manufacturing 成形方向对选择性激光熔化增材制造316L不锈钢表面质量的影响
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-10-31 DOI: 10.1680/jsuin.23.00059
Qiang Li, Songyong Liu, Qingyang Wang, Yan Wang
Different forming directions have significant impact on surface quality in additive manufacturing. This study is aimed at exploring how different forming directions influence surface quality in additive manufacturing. First, experiments were designed to prepare 316L stainless steel by selective laser melting additives manufacturing in different forming directions. Besides, the surfaces of samples manufactured by additives manufacturing in different forming directions were tested using a 3D surface profiler and a scanning electron microscope. In this way, their 3D profile maps, surface roughness values, and scanning electron microscopy images were obtained. Furthermore, the surface quality was characterized by four parameters, the maximum height-S z , the maximum valley depth-S v , the standard deviation of height-S q , and the arithmetic average height-S a . The following results were obtained: (1) Different forming directions correspond to close upper surface roughness S a values, the minimum and maximum values of S a being 7.16 um and 8.20 um, respectively. S a is the smallest among the four parameters (S z , S v , S q , and S a ), shows good stability and statistical significance. (2) In the same forming direction, the upper surface roughness values follow S z >S v >S q >S a ,S z is the largest, exceeding 800 um, average value S a is the smallest reaching 7.36 um. The values of S q , S z , and S v vary when the forming direction changes; specifically, all of them increase when the forming direction changes from a vertical direction to planar and lateral directions in turn. (3) In different forming directions, the values of S z , S v , S q , and S a vary on different surfaces (XOY, YOZ, and XOZ surfaces), but their variations are basically similar. Meanwhile, the S z , S v , S q , and S a values of the free surfaces are at least 10 times greater than those of the printed surface. (4) In the selective laser melting additive manufacturing process, it is necessary to reasonably select a forming direction for parts with different dimensional parameters on each side. High-quality workpiece can be obtained with a reasonable forming direction. The proposed method serves as references for the selection of forming direction of selective laser melting additive manufacturing and provides a new method to improve the surface quality of parts by additive manufacturing.
在增材制造中,不同的成形方向对表面质量有显著影响。本研究旨在探讨增材制造中不同成型方向对表面质量的影响。首先,设计了采用不同成型方向的选择性激光熔化添加剂制备316L不锈钢的实验。此外,利用三维表面轮廓仪和扫描电镜对不同成型方向的添加剂制备样品进行了表面形貌测试。通过这种方法,获得了它们的三维轮廓图、表面粗糙度值和扫描电镜图像。地表质量由最大高度- s z、最大谷深- s v、高度标准差- s q和算术平均高度- s a 4个参数表征。结果表明:(1)不同的成形方向对应的上表面粗糙度S a值较为接近,S a最小值为7.16 um,最大值为8.20 um;S a在S z、S v、S q、S a四个参数中最小,具有较好的稳定性和统计学意义。(2)同一成形方向上表面粗糙度值依次为S z >S v >S q >S a,S z最大,超过800 um,平均值S a最小,达到7.36 um。S q、S z、S v随成形方向的变化而变化;其中,当成形方向由垂直方向依次向平面方向和横向方向转变时,它们都有所增加。(3)在不同成形方向下,不同表面(XOY、YOZ、XOZ)上的S z、S v、S q、S a值不同,但变化基本相似。同时,自由表面的sz、sv、sq和sa值至少是印刷表面的10倍。(4)在选择性激光熔化增材制造工艺中,需要对每侧尺寸参数不同的零件合理选择成型方向。合理的成形方向可以得到高质量的工件。该方法为选择性激光熔化增材制造成形方向的选择提供了参考,为增材制造提高零件表面质量提供了一种新方法。
{"title":"Influence of forming directions on surface quality of 316L stainless steel produced by selective laser melting additive manufacturing","authors":"Qiang Li, Songyong Liu, Qingyang Wang, Yan Wang","doi":"10.1680/jsuin.23.00059","DOIUrl":"https://doi.org/10.1680/jsuin.23.00059","url":null,"abstract":"Different forming directions have significant impact on surface quality in additive manufacturing. This study is aimed at exploring how different forming directions influence surface quality in additive manufacturing. First, experiments were designed to prepare 316L stainless steel by selective laser melting additives manufacturing in different forming directions. Besides, the surfaces of samples manufactured by additives manufacturing in different forming directions were tested using a 3D surface profiler and a scanning electron microscope. In this way, their 3D profile maps, surface roughness values, and scanning electron microscopy images were obtained. Furthermore, the surface quality was characterized by four parameters, the maximum height-S z , the maximum valley depth-S v , the standard deviation of height-S q , and the arithmetic average height-S a . The following results were obtained: (1) Different forming directions correspond to close upper surface roughness S a values, the minimum and maximum values of S a being 7.16 um and 8.20 um, respectively. S a is the smallest among the four parameters (S z , S v , S q , and S a ), shows good stability and statistical significance. (2) In the same forming direction, the upper surface roughness values follow S z &gt;S v &gt;S q &gt;S a ,S z is the largest, exceeding 800 um, average value S a is the smallest reaching 7.36 um. The values of S q , S z , and S v vary when the forming direction changes; specifically, all of them increase when the forming direction changes from a vertical direction to planar and lateral directions in turn. (3) In different forming directions, the values of S z , S v , S q , and S a vary on different surfaces (XOY, YOZ, and XOZ surfaces), but their variations are basically similar. Meanwhile, the S z , S v , S q , and S a values of the free surfaces are at least 10 times greater than those of the printed surface. (4) In the selective laser melting additive manufacturing process, it is necessary to reasonably select a forming direction for parts with different dimensional parameters on each side. High-quality workpiece can be obtained with a reasonable forming direction. The proposed method serves as references for the selection of forming direction of selective laser melting additive manufacturing and provides a new method to improve the surface quality of parts by additive manufacturing.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":"111 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135813211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coloration and antibacterial treatment of aramid fabric: A comprehensive review 芳纶织物的着色及抗菌处理综述
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-10-27 DOI: 10.1680/jsuin.23.00065
Rony Mia, Sania Habib, Mohammed A Assiri, Huihong Liu, Sakil Mahmud
Aramid fabric/fiber (AF), which possesses outstanding comprehensive qualities such as low density, high specific strength, and high specific modulus, is widely used for dresses of defense applications. Different dyes and chemicals are required to give the specific coloration effect of AF. AF are relatively difficult to dye due to their very crystalline structure and remarkable compactness. The different techniques, including supercritical carbon dioxide, microwave irradiation, liquid ammonia, ultraviolet treatment, co-polymerization, high temperature, carrier method, and ozone treatment, have already been utilized for the dyeing of AF. Among the processes, some of them show excellent dyeing performances in color fastness to wash, rubbing, and light. The AF also frequently used in harsh environments and cannot be cleaned in a timely manner; bacteria that develop on their surface might pose a health concern, making AF with antibacterial properties are extremely desirable. There have been a number of antibacterial treatments for AF to develop protection against gram-positive and gram-negative bacteria. The in-situ treatment of AF using silver nanoparticles (AgNPs) showed a high level of antibacterial activity. However, there are no reviews that discuss the coloration and antibacterial activity of AF. Therefore, this review summarized the coloration and antibacterial activity of AF using different dyes and nanoparticles.
芳纶织物/纤维(AF)具有低密度、高比强度、高比模量等突出的综合性能,广泛用于国防服装。AF的特定着色效果需要不同的染料和化学物质。AF由于其非常结晶的结构和显著的致密性,相对难以染色。超临界二氧化碳、微波辐照、液氨、紫外处理、共聚合、高温、载体法、臭氧处理等技术已被应用于AF的染色,其中一些工艺在耐洗、耐摩擦、耐光等方面表现出优异的染色性能。AF也经常在恶劣的环境中使用,不能及时清洗;在其表面生长的细菌可能会造成健康问题,因此具有抗菌特性的AF非常受欢迎。目前已有许多针对房颤的抗菌治疗,以发展对革兰氏阳性和革兰氏阴性细菌的保护。用银纳米粒子(AgNPs)原位处理AF显示出较高的抗菌活性。然而,目前还没有对AF的着色度和抗菌活性进行讨论的文献。因此,本文综述了不同染料和纳米颗粒对AF的着色度和抗菌活性的影响。
{"title":"Coloration and antibacterial treatment of aramid fabric: A comprehensive review","authors":"Rony Mia, Sania Habib, Mohammed A Assiri, Huihong Liu, Sakil Mahmud","doi":"10.1680/jsuin.23.00065","DOIUrl":"https://doi.org/10.1680/jsuin.23.00065","url":null,"abstract":"Aramid fabric/fiber (AF), which possesses outstanding comprehensive qualities such as low density, high specific strength, and high specific modulus, is widely used for dresses of defense applications. Different dyes and chemicals are required to give the specific coloration effect of AF. AF are relatively difficult to dye due to their very crystalline structure and remarkable compactness. The different techniques, including supercritical carbon dioxide, microwave irradiation, liquid ammonia, ultraviolet treatment, co-polymerization, high temperature, carrier method, and ozone treatment, have already been utilized for the dyeing of AF. Among the processes, some of them show excellent dyeing performances in color fastness to wash, rubbing, and light. The AF also frequently used in harsh environments and cannot be cleaned in a timely manner; bacteria that develop on their surface might pose a health concern, making AF with antibacterial properties are extremely desirable. There have been a number of antibacterial treatments for AF to develop protection against gram-positive and gram-negative bacteria. The in-situ treatment of AF using silver nanoparticles (AgNPs) showed a high level of antibacterial activity. However, there are no reviews that discuss the coloration and antibacterial activity of AF. Therefore, this review summarized the coloration and antibacterial activity of AF using different dyes and nanoparticles.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":"6 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136263732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of Multi-walled carbon nanotube incorporation on the photocatalytic activity of TiO2 nanotubes 多壁碳纳米管掺入对TiO2纳米管光催化活性的影响
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-10-23 DOI: 10.1680/jsuin.23.00051
Mert Altay, Murat Baydoğan
Arrays of titanium dioxide (TiO 2 ) nanotubes were prepared on commercially pure titanium (Cp-Ti) foils by anodic oxidation in 0.5 M HF-based electrolyte with multi-walled carbon nanotubes (MWCNTs) addition up to 0.035 g/L. The samples were annealed at 450 °C for 1 h after the anodic oxidation to form a crystalline anatase structure. The effect of the MWCNTs addition on morphology and photocatalytic activity of the nanostructures was characterized by scanning electron microscopy (SEM), Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, and methylene blue (MB) degradation tests. The results showed that MWCNTs were successfully incorporated into the TiO 2 nanotube structure, and significantly affected its photocatalytic activity. The best photocatalytic performance was achieved with the use of 0.025 g/L MWCNTs in the electrolyte composition. However, when the MWCNTs content in the electrolyte increased, the electron-hole recombination rate and photon absorption ability of the structure deteriorate, resulting in a decreased photocatalytic activity.
采用添加量为0.035 g/L的多壁碳纳米管(MWCNTs)在0.5 M hf基电解质中阳极氧化的方法,在工业纯钛(Cp-Ti)箔上制备了二氧化钛(tio2)纳米管阵列。样品经阳极氧化后,在450℃下退火1 h,形成结晶锐钛矿结构。通过扫描电镜(SEM)、拉曼光谱(Raman spectroscopy)、紫外-可见漫反射光谱(DRS)、光致发光光谱(PL)和亚甲基蓝(MB)降解测试表征了添加MWCNTs对纳米结构形貌和光催化活性的影响。结果表明,MWCNTs成功地掺入到tio2纳米管结构中,并显著影响了其光催化活性。在电解质组合物中加入0.025 g/L的MWCNTs时,光催化性能最佳。然而,当电解质中MWCNTs含量增加时,结构的电子-空穴复合速率和光子吸收能力变差,导致光催化活性下降。
{"title":"Effect of Multi-walled carbon nanotube incorporation on the photocatalytic activity of TiO<sub>2</sub> nanotubes","authors":"Mert Altay, Murat Baydoğan","doi":"10.1680/jsuin.23.00051","DOIUrl":"https://doi.org/10.1680/jsuin.23.00051","url":null,"abstract":"Arrays of titanium dioxide (TiO 2 ) nanotubes were prepared on commercially pure titanium (Cp-Ti) foils by anodic oxidation in 0.5 M HF-based electrolyte with multi-walled carbon nanotubes (MWCNTs) addition up to 0.035 g/L. The samples were annealed at 450 °C for 1 h after the anodic oxidation to form a crystalline anatase structure. The effect of the MWCNTs addition on morphology and photocatalytic activity of the nanostructures was characterized by scanning electron microscopy (SEM), Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, and methylene blue (MB) degradation tests. The results showed that MWCNTs were successfully incorporated into the TiO 2 nanotube structure, and significantly affected its photocatalytic activity. The best photocatalytic performance was achieved with the use of 0.025 g/L MWCNTs in the electrolyte composition. However, when the MWCNTs content in the electrolyte increased, the electron-hole recombination rate and photon absorption ability of the structure deteriorate, resulting in a decreased photocatalytic activity.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":"79 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135405039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards tailored surface topography on electrospun wound dressings for maximised exudate absorption 为了最大限度地吸收渗出液,定制了静电纺伤口敷料的表面形貌
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-10-13 DOI: 10.1680/jsuin.23.00044
Judith Zubia-Aranburu, Lorea Buruaga, Myriam Martin-Inaraja, Clara Rodriguez, Silvia Santos, Unai Silván, Cristina Eguizabal, Alaitz Zabala
Since electrospinning can generate micro- to nanometre-scale fibres, it is widely used for fabricating wound dressings. Electrospun scaffolds with defined three-dimensional patterns at the mat surface can be efficiently fabricated using textured collectors that transfer the topography during the manufacturing process. However, the efficacy of surface pattern transfer from the collector to the mat, the correlation between the topography and the absorption capability and the effect of sterilisation on absorption have not yet been analysed. In this study, textured patterns were imprinted over polycaprolactone electrospun mats using textured collectors. The successful transferability of the patterns was quantified through height, hybrid and functional surface topography parameters. Additionally, ethylene oxide, hydrogen peroxide (H 2 O 2 ) and ultraviolet (UV) sterilisation methods were tested, of which only UV preserved the morphological and functional integrity of the mat. Finally, fibroblasts were used to analyse the cytotoxicity and cellular response of the dressings, verifying their biocompatible nature. This study demonstrates that absorption capacity can be modulated by the surface texture of the wound dressing. The S dq and S dr parameters were identified as key surface characteristics for enhancing absorption capacity and yielded an increase of up to 176.76% compared with the non-textured control, thus revealing the potential of surface functionalisation for increasing exudate absorption.
由于静电纺丝可以产生微到纳米级的纤维,它被广泛用于制造伤口敷料。利用在制造过程中传递地形的纹理收集器,可以有效地制造出具有明确三维图案的静电纺丝支架。然而,表面图案从收集器转移到垫子的有效性,地形与吸收能力之间的相关性以及灭菌对吸收的影响尚未得到分析。在这项研究中,利用纹理收集器在聚己内酯静电纺垫子上刻印纹理图案。通过高度、混合和功能表面形貌参数量化了模式的成功转移性。此外,对环氧乙烷、过氧化氢(h2o2)和紫外线(UV)消毒方法进行了测试,其中只有紫外线能保持绷带的形态和功能完整性。最后,用成纤维细胞分析敷料的细胞毒性和细胞反应,验证其生物相容性。这项研究表明,吸收能力可以通过伤口敷料的表面质地来调节。sdq和sdr参数被确定为增强吸收能力的关键表面特征,与非纹理控制相比,其吸收能力增加了176.76%,从而揭示了表面功能化增加渗出物吸收的潜力。
{"title":"Towards tailored surface topography on electrospun wound dressings for maximised exudate absorption","authors":"Judith Zubia-Aranburu, Lorea Buruaga, Myriam Martin-Inaraja, Clara Rodriguez, Silvia Santos, Unai Silván, Cristina Eguizabal, Alaitz Zabala","doi":"10.1680/jsuin.23.00044","DOIUrl":"https://doi.org/10.1680/jsuin.23.00044","url":null,"abstract":"Since electrospinning can generate micro- to nanometre-scale fibres, it is widely used for fabricating wound dressings. Electrospun scaffolds with defined three-dimensional patterns at the mat surface can be efficiently fabricated using textured collectors that transfer the topography during the manufacturing process. However, the efficacy of surface pattern transfer from the collector to the mat, the correlation between the topography and the absorption capability and the effect of sterilisation on absorption have not yet been analysed. In this study, textured patterns were imprinted over polycaprolactone electrospun mats using textured collectors. The successful transferability of the patterns was quantified through height, hybrid and functional surface topography parameters. Additionally, ethylene oxide, hydrogen peroxide (H 2 O 2 ) and ultraviolet (UV) sterilisation methods were tested, of which only UV preserved the morphological and functional integrity of the mat. Finally, fibroblasts were used to analyse the cytotoxicity and cellular response of the dressings, verifying their biocompatible nature. This study demonstrates that absorption capacity can be modulated by the surface texture of the wound dressing. The S dq and S dr parameters were identified as key surface characteristics for enhancing absorption capacity and yielded an increase of up to 176.76% compared with the non-textured control, thus revealing the potential of surface functionalisation for increasing exudate absorption.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135805987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Slippery surface with ternary coupled structures for improving lubricant storage capacity 光滑表面三元耦合结构,提高润滑油储存能力
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-10-13 DOI: 10.1680/jsuin.23.00049
Ying Zhai, Shuwei Lv, Qiao Liu, Xiaodong Yang, Xianli Liu, Zhuojuan Yang, Chunyu Mao
A slippery surface has the capability to protect the substrate surface, which can prevent substrate corrosion in a harsh environment. However, existing slippery surfaces have the limitation of insufficient oil-locking capability for rough structures, which limits their practical application. To solve the aforementioned limitation, the authors developed a slippery surface with a good oil-locking capability. First, a wire-cutting machine tool was used to fabricate ternary coupled grooved structures on an aluminum (Al) substrate, which could increase the lubricant-storage capacity of the microstructures, and the substrate was named slippery porous surface with groove-textured aluminum (Slips-G-Al). Then, a surface durability test was performed involving lubricant shear, sandpaper wear and water impact. The chemical stability test involved acid, alkali, salt corrosion and weather resistance tests, which showed that Slips-G-Al had a good lubricant-storage capacity compared with the traditional Slips surface. In addition, the self-cleaning performance and the fog collection capability of Slips-G-Al were also studied. Finally, an electrochemical corrosion test of Slips-G-Al was carried out. The findings showed remarkable application prospects in the aerospace and shipbuilding fields.
光滑的表面具有保护基材表面的能力,可以防止基材在恶劣环境中被腐蚀。然而,现有光滑表面对粗糙结构的锁油能力不足,限制了其实际应用。为了解决上述限制,作者开发了一种具有良好锁油能力的光滑表面。首先,利用线切割机床在铝(Al)基板上制备三元耦合沟槽结构,增加了微观结构的润滑油储存能力,并将基片命名为带有沟槽织构铝的光滑多孔表面(slip - g -Al)。然后,进行了包括润滑油剪切、砂纸磨损和水冲击在内的表面耐久性测试。化学稳定性测试包括酸、碱、盐腐蚀和耐候性测试,表明与传统的slip表面相比,slip - g - al具有良好的润滑油储存能力。此外,还研究了slip - g - al的自清洁性能和集雾能力。最后,对滑模- g - al进行了电化学腐蚀试验。研究结果在航空航天、造船等领域具有良好的应用前景。
{"title":"Slippery surface with ternary coupled structures for improving lubricant storage capacity","authors":"Ying Zhai, Shuwei Lv, Qiao Liu, Xiaodong Yang, Xianli Liu, Zhuojuan Yang, Chunyu Mao","doi":"10.1680/jsuin.23.00049","DOIUrl":"https://doi.org/10.1680/jsuin.23.00049","url":null,"abstract":"A slippery surface has the capability to protect the substrate surface, which can prevent substrate corrosion in a harsh environment. However, existing slippery surfaces have the limitation of insufficient oil-locking capability for rough structures, which limits their practical application. To solve the aforementioned limitation, the authors developed a slippery surface with a good oil-locking capability. First, a wire-cutting machine tool was used to fabricate ternary coupled grooved structures on an aluminum (Al) substrate, which could increase the lubricant-storage capacity of the microstructures, and the substrate was named slippery porous surface with groove-textured aluminum (Slips-G-Al). Then, a surface durability test was performed involving lubricant shear, sandpaper wear and water impact. The chemical stability test involved acid, alkali, salt corrosion and weather resistance tests, which showed that Slips-G-Al had a good lubricant-storage capacity compared with the traditional Slips surface. In addition, the self-cleaning performance and the fog collection capability of Slips-G-Al were also studied. Finally, an electrochemical corrosion test of Slips-G-Al was carried out. The findings showed remarkable application prospects in the aerospace and shipbuilding fields.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135805986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Surface Innovations
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1