UAV low-altitude obstacle detection based on the fusion of LiDAR and camera

Zhaowei Ma, Wenchen Yao, Yifeng Niu, Bosen Lin, Tianqing Liu
{"title":"UAV low-altitude obstacle detection based on the fusion of LiDAR and camera","authors":"Zhaowei Ma,&nbsp;Wenchen Yao,&nbsp;Yifeng Niu,&nbsp;Bosen Lin,&nbsp;Tianqing Liu","doi":"10.1007/s43684-021-00014-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, aiming at the flying scene of the small unmanned aerial vehicle (UAV) in the low-altitude suburban environment, we choose the sensor configuration scheme of LiDAR and visible light camera, and design the static and dynamic obstacle detection algorithms based on sensor fusion. For static obstacles such as power lines and buildings in the low-altitude environment, the way that image-assisted verification of point clouds is used to fuse the contour information of the images and the depth information of the point clouds to obtain the location and size of static obstacles. For unknown dynamic obstacles such as rotary-wing UAVs, the IMM-UKF algorithm is designed to fuse the distance measurement information of point clouds and the high precision angle measurement information of image to achieve accurate estimation of the location and velocity of the dynamic obstacles. We build an experimental platform to verify the effectiveness of the obstacle detection algorithm in actual scenes and evaluate the relevant performance indexes.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-021-00014-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-021-00014-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, aiming at the flying scene of the small unmanned aerial vehicle (UAV) in the low-altitude suburban environment, we choose the sensor configuration scheme of LiDAR and visible light camera, and design the static and dynamic obstacle detection algorithms based on sensor fusion. For static obstacles such as power lines and buildings in the low-altitude environment, the way that image-assisted verification of point clouds is used to fuse the contour information of the images and the depth information of the point clouds to obtain the location and size of static obstacles. For unknown dynamic obstacles such as rotary-wing UAVs, the IMM-UKF algorithm is designed to fuse the distance measurement information of point clouds and the high precision angle measurement information of image to achieve accurate estimation of the location and velocity of the dynamic obstacles. We build an experimental platform to verify the effectiveness of the obstacle detection algorithm in actual scenes and evaluate the relevant performance indexes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于激光雷达与摄像头融合的无人机低空障碍物检测
本文针对小型无人飞行器(UAV)在郊区低空环境中的飞行场景,选择激光雷达和可见光相机的传感器配置方案,设计了基于传感器融合的静态和动态障碍物检测算法。对于低空环境中的电线、建筑物等静态障碍物,采用图像辅助点云验证的方式,融合图像的轮廓信息和点云的深度信息,获取静态障碍物的位置和大小。针对旋翼无人机等未知动态障碍物,设计了 IMM-UKF 算法,融合点云的距离测量信息和图像的高精度角度测量信息,实现对动态障碍物位置和速度的精确估计。我们搭建了一个实验平台来验证障碍物检测算法在实际场景中的有效性,并对相关性能指标进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Stabilization of nonlinear safety-critical systems by relaxed converse Lyapunov-barrier approach and its applications in robotic systems Pedestrian safety alarm system based on binocular distance measurement for trucks using recognition feature analysis Multi-objective optimal trajectory planning for manipulators based on CMOSPBO A multi-step regularity assessment and joint prediction system for ordering time series based on entropy and deep learning Life cycle assessment of metal powder production: a Bayesian stochastic Kriging model-based autonomous estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1