Zahra Askarniya , Manoj P. Rayaroth , Xun Sun , Zhaohui Wang , Grzegorz Boczkaj
{"title":"Degradation of bisphenol S – a contaminant of emerging concern - by synergistic ozone and percarbonate based AOP","authors":"Zahra Askarniya , Manoj P. Rayaroth , Xun Sun , Zhaohui Wang , Grzegorz Boczkaj","doi":"10.1016/j.wri.2023.100208","DOIUrl":null,"url":null,"abstract":"<div><p>Degradation of bisphenol S was studied using ozone activated by sodium percarbonate and the effectiveness of optimized process was compared with the peroxone process. The influence of several factors including sodium percarbonate concentration, ozone dose, pH, and water matrix were investigated. A synergetic coefficient of 3.84 was achieved for the combination of sodium percarbonate and ozone, confirming the effectiveness of this hybrid process. Scavenging tests revealed, that carbonate radicals, hydroxyl radicals, superoxide radicals, and singlet oxygen contributed to the degradation of bisphenol S. At the same operating condition, degradation effectiveness values of 99% and 81% were obtained by ozone combined with sodium percarbonate and hydrogen peroxide, respectively, demonstrating the superiority of sodium percarbonate over hydrogen peroxide in combination with ozone for the degradation of bisphenol S. Low concentration of inorganic anions had a negligible effect on the degradation, while carbonate ions increased the first-order degradation rate constant by 56%.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"29 ","pages":"Article 100208"},"PeriodicalIF":4.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212371723000082","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 5
Abstract
Degradation of bisphenol S was studied using ozone activated by sodium percarbonate and the effectiveness of optimized process was compared with the peroxone process. The influence of several factors including sodium percarbonate concentration, ozone dose, pH, and water matrix were investigated. A synergetic coefficient of 3.84 was achieved for the combination of sodium percarbonate and ozone, confirming the effectiveness of this hybrid process. Scavenging tests revealed, that carbonate radicals, hydroxyl radicals, superoxide radicals, and singlet oxygen contributed to the degradation of bisphenol S. At the same operating condition, degradation effectiveness values of 99% and 81% were obtained by ozone combined with sodium percarbonate and hydrogen peroxide, respectively, demonstrating the superiority of sodium percarbonate over hydrogen peroxide in combination with ozone for the degradation of bisphenol S. Low concentration of inorganic anions had a negligible effect on the degradation, while carbonate ions increased the first-order degradation rate constant by 56%.
期刊介绍:
Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry