{"title":"Forage sorghum grown in a conventional wheat–grain sorghum–fallow rotation increased cropping system productivity and profitability","authors":"J. Holman, A. Obour, Y. Assefa","doi":"10.1139/cjps-2022-0171","DOIUrl":null,"url":null,"abstract":"Abstract Intensifying winter wheat (Triticum aestivum)–grain sorghum [Sorghum bicolor (L.) Moench]–fallow (W–GS–FL) crop rotation with annual forages can increase productivity and resource use efficiency. The objective of this research was to quantify the impact of increasing crop intensity by growing forages in a traditional W–GS–FL rotation on cropping system productivity, water use, precipitation use efficiency, and net income. The study was conducted at the Southwest Research-Extension Center near Garden City, Kansas, from 2013 through 2020. Winter wheat (W), grain sorghum (GS), forage sorghum (FS), and forage oats (FO, Avena sativa L.) were used to generate six crop rotation treatments. These rotation treatments interspersed with fallow periods (FL) were W–GS–FL, W–FS–FL, W/FS–GS–FO, W/FS–FS–FO, W/FS–GS–FL, and W/FS–FS–FL. A W/FS indicates winter wheat double crop FS planted in the same year. The yield of FS was 45%–56% more with W/FS–FS–FO and W/FS–FS–FL compared with W–FS–FL. Available soil water at GS planting was 23%–30% less, and GS yield was 52%–60% smaller with W/FS–GS–FL compared to W–GS–FL. Water productivity and pre-season soil water storage were greatest with W/FS–FS–FL and W/FS–FS–FO. Inclusion of W/FS increased cost of production compared with W–GS(FS)–FL rotations. Gross return was greatest with W/FS–FS–FO and W/FS–FS–FL. The W/FS–FS–FO increased cropping intensity, productivity, resource use, and gross margin relative to other rotations in the semi-arid Great Plains. Producers should consider double-cropping of FS after wheat harvest, followed by a second year of FS in dryland cropping systems if there is sufficient forage demand.","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":"103 1","pages":"61 - 72"},"PeriodicalIF":1.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjps-2022-0171","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Intensifying winter wheat (Triticum aestivum)–grain sorghum [Sorghum bicolor (L.) Moench]–fallow (W–GS–FL) crop rotation with annual forages can increase productivity and resource use efficiency. The objective of this research was to quantify the impact of increasing crop intensity by growing forages in a traditional W–GS–FL rotation on cropping system productivity, water use, precipitation use efficiency, and net income. The study was conducted at the Southwest Research-Extension Center near Garden City, Kansas, from 2013 through 2020. Winter wheat (W), grain sorghum (GS), forage sorghum (FS), and forage oats (FO, Avena sativa L.) were used to generate six crop rotation treatments. These rotation treatments interspersed with fallow periods (FL) were W–GS–FL, W–FS–FL, W/FS–GS–FO, W/FS–FS–FO, W/FS–GS–FL, and W/FS–FS–FL. A W/FS indicates winter wheat double crop FS planted in the same year. The yield of FS was 45%–56% more with W/FS–FS–FO and W/FS–FS–FL compared with W–FS–FL. Available soil water at GS planting was 23%–30% less, and GS yield was 52%–60% smaller with W/FS–GS–FL compared to W–GS–FL. Water productivity and pre-season soil water storage were greatest with W/FS–FS–FL and W/FS–FS–FO. Inclusion of W/FS increased cost of production compared with W–GS(FS)–FL rotations. Gross return was greatest with W/FS–FS–FO and W/FS–FS–FL. The W/FS–FS–FO increased cropping intensity, productivity, resource use, and gross margin relative to other rotations in the semi-arid Great Plains. Producers should consider double-cropping of FS after wheat harvest, followed by a second year of FS in dryland cropping systems if there is sufficient forage demand.
期刊介绍:
Published since 1957, the Canadian Journal of Plant Science is a bimonthly journal that contains new research on all aspects of plant science relevant to continental climate agriculture, including plant production and management (grain, forage, industrial, and alternative crops), horticulture (fruit, vegetable, ornamental, greenhouse, and alternative crops), and pest management (entomology, plant pathology, and weed science). Cross-disciplinary research in the application of technology, plant breeding, genetics, physiology, biotechnology, microbiology, soil management, economics, meteorology, post-harvest biology, and plant production systems is also published. Research that makes a significant contribution to the advancement of knowledge of crop, horticulture, and weed sciences (e.g., drought or stress resistance), but not directly applicable to the environmental regions of Canadian agriculture, may also be considered. The Journal also publishes reviews, letters to the editor, the abstracts of technical papers presented at the meetings of the sponsoring societies, and occasionally conference proceedings.