{"title":"Optimization of Buoy-Type Energy Harvesting Device in Lake Using Firefly Algorithm","authors":"M. Chiu, Ho-Chih Cheng","doi":"10.1093/jom/ufad013","DOIUrl":null,"url":null,"abstract":"\n It is of utmost importance to prioritize the exploration of alternative green energy sources, reducing our dependence on coal and oil, in order to mitigate the detrimental effects of greenhouse gases. This paper introduces an innovative energy harvester that utilizes a single magnet driven by a buoy attached to a pole within a lake. We delve into the correlation between the induced electricity and various factors such as wind speed, lake length and depth, as well as the design parameters of the energy harvester. To enhance the performance of the energy harvester, we employ the Firefly Algorithm, gradually fine-tuning its control parameters to acquire the most optimal design data. Our analysis reveals that, under specific conditions including a fetch of 4 km, a lake depth of 10 m, and a wind speed of 4.5 m/s, the one-magnet energy harvester exhibits a commendable electrical power output of 0.1 Watt. This research not only emphasizes the potential of hydraulic energy generation as a promising and sustainable green energy source but also provides valuable insights into optimizing energy harvesters to achieve maximum electricity production.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufad013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is of utmost importance to prioritize the exploration of alternative green energy sources, reducing our dependence on coal and oil, in order to mitigate the detrimental effects of greenhouse gases. This paper introduces an innovative energy harvester that utilizes a single magnet driven by a buoy attached to a pole within a lake. We delve into the correlation between the induced electricity and various factors such as wind speed, lake length and depth, as well as the design parameters of the energy harvester. To enhance the performance of the energy harvester, we employ the Firefly Algorithm, gradually fine-tuning its control parameters to acquire the most optimal design data. Our analysis reveals that, under specific conditions including a fetch of 4 km, a lake depth of 10 m, and a wind speed of 4.5 m/s, the one-magnet energy harvester exhibits a commendable electrical power output of 0.1 Watt. This research not only emphasizes the potential of hydraulic energy generation as a promising and sustainable green energy source but also provides valuable insights into optimizing energy harvesters to achieve maximum electricity production.
期刊介绍:
The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.