Industrial analytics – An overview

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS IT-Information Technology Pub Date : 2022-01-11 DOI:10.1515/itit-2021-0066
Christoph Gröger
{"title":"Industrial analytics – An overview","authors":"Christoph Gröger","doi":"10.1515/itit-2021-0066","DOIUrl":null,"url":null,"abstract":"Abstract The digital transformation generates huge amounts of heterogeneous data across the industrial value chain, from simulation data in engineering, over sensor data in manufacturing to telemetry data on product use. Extracting insights from these data constitutes a critical success factor for industrial enterprises, e. g., to optimize processes and enhance product features. This is referred to as industrial analytics, i. e., data analytics for industrial value creation. Industrial analytics is an interdisciplinary subject area between data science and industrial engineering and is at the core of Industry 4.0. Yet, existing literature on industrial analytics is fragmented and specialized. To address this issue, this paper presents a holistic overview of the field of industrial analytics integrating both current research as well as industry experiences on real-world industrial analytics projects. We define key terms, describe typical use cases and discuss characteristics of industrial analytics. Moreover, we present a conceptual framework for industrial analytics that structures essential elements, e. g., data platforms and data roles. Finally, we conclude and highlight future research directions.","PeriodicalId":43953,"journal":{"name":"IT-Information Technology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT-Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/itit-2021-0066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract The digital transformation generates huge amounts of heterogeneous data across the industrial value chain, from simulation data in engineering, over sensor data in manufacturing to telemetry data on product use. Extracting insights from these data constitutes a critical success factor for industrial enterprises, e. g., to optimize processes and enhance product features. This is referred to as industrial analytics, i. e., data analytics for industrial value creation. Industrial analytics is an interdisciplinary subject area between data science and industrial engineering and is at the core of Industry 4.0. Yet, existing literature on industrial analytics is fragmented and specialized. To address this issue, this paper presents a holistic overview of the field of industrial analytics integrating both current research as well as industry experiences on real-world industrial analytics projects. We define key terms, describe typical use cases and discuss characteristics of industrial analytics. Moreover, we present a conceptual framework for industrial analytics that structures essential elements, e. g., data platforms and data roles. Finally, we conclude and highlight future research directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业分析-概述
摘要数字化转型在整个产业价值链上产生了大量异构数据,从工程中的模拟数据、制造中的传感器数据到产品使用的遥测数据。从这些数据中提取见解是工业企业成功的关键因素。 g.优化工艺并增强产品特性。这被称为工业分析。 e.工业价值创造的数据分析。工业分析是数据科学和工业工程之间的一个跨学科学科领域,是工业4.0的核心。然而,现有的工业分析文献是零散和专业的。为了解决这个问题,本文对工业分析领域进行了全面的概述,结合了当前的研究以及现实世界工业分析项目的行业经验。我们定义了关键术语,描述了典型的用例,并讨论了工业分析的特点。此外,我们还提出了一个工业分析的概念框架,该框架构建了基本要素。 g.数据平台和数据角色。最后,我们总结并强调了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IT-Information Technology
IT-Information Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.80
自引率
0.00%
发文量
29
期刊最新文献
Wildfire prediction for California using and comparing Spatio-Temporal Knowledge Graphs Machine learning in AI Factories – five theses for developing, managing and maintaining data-driven artificial intelligence at large scale Machine learning applications Machine learning in sensor identification for industrial systems Machine learning and cyber security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1