Yuehua Wu, Sihao Zhou, Jie Yi, Dongsheng Wang, Wen Wu
{"title":"Facile fabrication of flexible alginate/polyaniline/graphene hydrogel fibers for strain sensor","authors":"Yuehua Wu, Sihao Zhou, Jie Yi, Dongsheng Wang, Wen Wu","doi":"10.1177/15589250221114641","DOIUrl":null,"url":null,"abstract":"Continuous production of conductive hydrogel fibers has received extensive interests due to their wide application in strain sensors. In this paper, we report on the fabrication of continuous alginate/polyaniline/graphene hydrogel fibers by the in situ polymerization and wet spinning methods. The obtained hydrogel fiber with good flexibility, high water absorbability (11.37 g/g), proper resistivity (220 Ω·m ) and stable resistance changes at both low strain (10%) and high strain (20% and 50%) could be used as a working strain sensor for a wearable human movements monitor. The conductive alginate/polyaniline/graphene hydrogel fiber shows highly sensitive, flexible, and recoverable (90% retention after five cycles) properties when monitoring palm, elbow, and knee movements. This kind of hydrogel with high elasticity and high sensitivity provides a possibility for the preparation of electromechanical sensors.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineered Fibers and Fabrics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15589250221114641","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 5
Abstract
Continuous production of conductive hydrogel fibers has received extensive interests due to their wide application in strain sensors. In this paper, we report on the fabrication of continuous alginate/polyaniline/graphene hydrogel fibers by the in situ polymerization and wet spinning methods. The obtained hydrogel fiber with good flexibility, high water absorbability (11.37 g/g), proper resistivity (220 Ω·m ) and stable resistance changes at both low strain (10%) and high strain (20% and 50%) could be used as a working strain sensor for a wearable human movements monitor. The conductive alginate/polyaniline/graphene hydrogel fiber shows highly sensitive, flexible, and recoverable (90% retention after five cycles) properties when monitoring palm, elbow, and knee movements. This kind of hydrogel with high elasticity and high sensitivity provides a possibility for the preparation of electromechanical sensors.
期刊介绍:
Journal of Engineered Fibers and Fabrics is a peer-reviewed, open access journal which aims to facilitate the rapid and wide dissemination of research in the engineering of textiles, clothing and fiber based structures.