{"title":"COMPUTATIONAL TURBULENT COMBUSTION IN THE AGE OF ARTIFICIAL INTELLIGENCE AND QUANTUM INFORMATION","authors":"Givi Payman","doi":"10.26577/ijmph.2021.v12.i1.01","DOIUrl":null,"url":null,"abstract":". The impact of high-performance computing on the society has been enormous, but it is easy to be taken for granted. In today’s world, it is virtually impossible to imagine system design or major decision making not aided via predictive modeling and simulation. Now that we are experiencing the Data Revolution and the emergence of the Second Quantum Revolution , it is wise to consider both of these elements in computational science and engineering. Data-driven modeling approaches and demonstrated speed-ups of quantum algorithms have the potential to transform scientific discovery. This will affect the fabrics of industrialized societies in diverse disciplines. A research arena which can substantially benefit from these technologies is combustion. This field has been the subject of heavy computational research for many decades now. In this review, some examples taken from the previous works of the author are presented to demonstrate how the field of computational turbulent combustion is benefiting from modern developments in machine learning (ML) and quantum computing (QC).","PeriodicalId":40756,"journal":{"name":"International Journal of Mathematics and Physics","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26577/ijmph.2021.v12.i1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
. The impact of high-performance computing on the society has been enormous, but it is easy to be taken for granted. In today’s world, it is virtually impossible to imagine system design or major decision making not aided via predictive modeling and simulation. Now that we are experiencing the Data Revolution and the emergence of the Second Quantum Revolution , it is wise to consider both of these elements in computational science and engineering. Data-driven modeling approaches and demonstrated speed-ups of quantum algorithms have the potential to transform scientific discovery. This will affect the fabrics of industrialized societies in diverse disciplines. A research arena which can substantially benefit from these technologies is combustion. This field has been the subject of heavy computational research for many decades now. In this review, some examples taken from the previous works of the author are presented to demonstrate how the field of computational turbulent combustion is benefiting from modern developments in machine learning (ML) and quantum computing (QC).