{"title":"Accelerating the Computation of Entropy Measures by Exploiting Vectors with Dissimilarity","authors":"Yun Lu, Mingjiang Wang, Rongchao Peng, Qiquan Zhang","doi":"10.3390/e19110598","DOIUrl":null,"url":null,"abstract":"In the diagnosis of neurological diseases and assessment of brain function, entropy measures for quantifying electroencephalogram (EEG) signals are attracting ever-increasing attention worldwide. However, some entropy measures, such as approximate entropy (ApEn), sample entropy (SpEn), multiscale entropy and so on, imply high computational costs because their computations are based on hundreds of data points. In this paper, we propose an effective and practical method to accelerate the computation of these entropy measures by exploiting vectors with dissimilarity (VDS). By means of the VDS decision, distance calculations of most dissimilar vectors can be avoided during computation. The experimental results show that, compared with the conventional method, the proposed VDS method enables a reduction of the average computation time of SpEn in random signals and EEG signals by 78.5% and 78.9%, respectively. The computation times are consistently reduced by about 80.1~82.8% for five kinds of EEG signals of different lengths. The experiments further demonstrate the use of the VDS method not only to accelerate the computation of SpEn in electromyography and electrocardiogram signals but also to accelerate the computations of time-shift multiscale entropy and ApEn in EEG signals. All results indicate that the VDS method is a powerful strategy for accelerating the computation of entropy measures and has promising application potential in the field of biomedical informatics.","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"19 1","pages":"598"},"PeriodicalIF":2.1000,"publicationDate":"2017-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/e19110598","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e19110598","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
In the diagnosis of neurological diseases and assessment of brain function, entropy measures for quantifying electroencephalogram (EEG) signals are attracting ever-increasing attention worldwide. However, some entropy measures, such as approximate entropy (ApEn), sample entropy (SpEn), multiscale entropy and so on, imply high computational costs because their computations are based on hundreds of data points. In this paper, we propose an effective and practical method to accelerate the computation of these entropy measures by exploiting vectors with dissimilarity (VDS). By means of the VDS decision, distance calculations of most dissimilar vectors can be avoided during computation. The experimental results show that, compared with the conventional method, the proposed VDS method enables a reduction of the average computation time of SpEn in random signals and EEG signals by 78.5% and 78.9%, respectively. The computation times are consistently reduced by about 80.1~82.8% for five kinds of EEG signals of different lengths. The experiments further demonstrate the use of the VDS method not only to accelerate the computation of SpEn in electromyography and electrocardiogram signals but also to accelerate the computations of time-shift multiscale entropy and ApEn in EEG signals. All results indicate that the VDS method is a powerful strategy for accelerating the computation of entropy measures and has promising application potential in the field of biomedical informatics.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.