Classification of Lombok Pearls using GLCM Feature Extraction and Artificial Neural Networks (ANN)

Muh Nasirudin Karim, R. A. Pramunendar, M. Soeleman, Purwanto Purwanto, Bahtiar Imran
{"title":"Classification of Lombok Pearls using GLCM Feature Extraction and Artificial Neural Networks (ANN)","authors":"Muh Nasirudin Karim, R. A. Pramunendar, M. Soeleman, Purwanto Purwanto, Bahtiar Imran","doi":"10.33096/ilkom.v14i3.1317.209-217","DOIUrl":null,"url":null,"abstract":"This study used the second-order Gray Level Co-occurrence Matrix (GLCM) and pearl image classification using the Artificial Neural Network (ANN). No previous research combines the GLCM method with artificial neural networks in pearl image classification. The number of images used in this study is 360 images with three labels, including 120 A images, 120 AA images, and 120 AAA images. The epochs used in this study were 10, 20, 30, 40, 50, 60, 70, and 80. The test results at epoch 10 got 80.00% accuracy, epoch 20 got 90.00% accuracy, epoch 30 got 93.33% accuracy, and epoch 40 got 94.44% accuracy. In comparison, epoch 50 got 95.55% accuracy, epoch 60 got 96.66% accuracy, epoch 70 got 96.66% accuracy, and epoch 80 got 95.55% accuracy. The combination of the proposed methods can produce accuracy in classifying pearl images, such as the classification test results.","PeriodicalId":33690,"journal":{"name":"Ilkom Jurnal Ilmiah","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ilkom Jurnal Ilmiah","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33096/ilkom.v14i3.1317.209-217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study used the second-order Gray Level Co-occurrence Matrix (GLCM) and pearl image classification using the Artificial Neural Network (ANN). No previous research combines the GLCM method with artificial neural networks in pearl image classification. The number of images used in this study is 360 images with three labels, including 120 A images, 120 AA images, and 120 AAA images. The epochs used in this study were 10, 20, 30, 40, 50, 60, 70, and 80. The test results at epoch 10 got 80.00% accuracy, epoch 20 got 90.00% accuracy, epoch 30 got 93.33% accuracy, and epoch 40 got 94.44% accuracy. In comparison, epoch 50 got 95.55% accuracy, epoch 60 got 96.66% accuracy, epoch 70 got 96.66% accuracy, and epoch 80 got 95.55% accuracy. The combination of the proposed methods can produce accuracy in classifying pearl images, such as the classification test results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于GLCM特征提取和人工神经网络(ANN)的龙目岛珍珠分类
本研究采用二阶灰度共生矩阵(GLCM)和人工神经网络(ANN)对珍珠图像进行分类。将GLCM方法与人工神经网络相结合用于珍珠图像分类尚无研究。本研究使用的图像数量为360张,分为三个标签,分别是120张A图像、120张AA图像和120张AAA图像。本研究使用的时代为10、20、30、40、50、60、70和80。epoch 10、epoch 20、epoch 30、epoch 40的测试结果准确率分别为80.00%、90.00%、93.33%和94.44%。相比之下,epoch 50的准确率为95.55%,epoch 60的准确率为96.66%,epoch 70的准确率为96.66%,epoch 80的准确率为95.55%。结合上述方法,可以提高珍珠图像分类的准确性,如分类测试结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
K-Nearest Neighbors Analysis for Public Sentiment towards Implementation of Booster Vaccines in Indonesia Feature Space Augmentation for Negation Handling on Sentiment Analysis Diabetes Mellitus Early Detection Simulation using The K-Nearest Neighbors Algorithm with Cloud-Based Runtime (COLAB) Comparative Study of Herbal Leaves Classification using Hybrid of GLCM-SVM and GLCM-CNN Decision Tree C4.5 Performance Improvement using Synthetic Minority Oversampling Technique (SMOTE) and K-Nearest Neighbor for Debtor Eligibility Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1