Token-Curated Registry with Citation Graph

IF 0.6 Q4 ECONOMICS Ledger Pub Date : 2019-06-05 DOI:10.5195/ledger.2019.182
Kensuke Ito, Hideyuki Tanaka
{"title":"Token-Curated Registry with Citation Graph","authors":"Kensuke Ito, Hideyuki Tanaka","doi":"10.5195/ledger.2019.182","DOIUrl":null,"url":null,"abstract":"In this study, we aim to incorporate the expertise of anonymous curators into a token-curated registry (TCR), a decentralized recommender system for collecting a list of high-quality content. This registry is important, because previous studies on TCRs have not specifically focused on technical content, such as academic papers and patents, whose effective curation requires expertise in relevant fields. To measure expertise, curation in our model focuses on both the content and its citation relationships, for which curator assignment uses the Personalized PageRank (PPR) algorithm while reward computation uses a multi-task peer-prediction mechanism. Our proposed CitedTCR bridges the literature on network-based and token-based recommender systems and contributes to the autonomous development of an evolving citation graph for high-quality content. Moreover, we experimentally confirm the incentive for registration and curation in CitedTCR using the simplification of a one-to-one correspondence between users and content (nodes).","PeriodicalId":36240,"journal":{"name":"Ledger","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ledger","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5195/ledger.2019.182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 4

Abstract

In this study, we aim to incorporate the expertise of anonymous curators into a token-curated registry (TCR), a decentralized recommender system for collecting a list of high-quality content. This registry is important, because previous studies on TCRs have not specifically focused on technical content, such as academic papers and patents, whose effective curation requires expertise in relevant fields. To measure expertise, curation in our model focuses on both the content and its citation relationships, for which curator assignment uses the Personalized PageRank (PPR) algorithm while reward computation uses a multi-task peer-prediction mechanism. Our proposed CitedTCR bridges the literature on network-based and token-based recommender systems and contributes to the autonomous development of an evolving citation graph for high-quality content. Moreover, we experimentally confirm the incentive for registration and curation in CitedTCR using the simplification of a one-to-one correspondence between users and content (nodes).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
令牌管理注册表与引文图
在本研究中,我们的目标是将匿名策展人的专业知识整合到令牌策展注册表(TCR)中,这是一个分散的推荐系统,用于收集高质量内容列表。这个注册表很重要,因为以前关于tcr的研究并没有特别关注技术内容,如学术论文和专利,这些内容的有效管理需要相关领域的专业知识。为了衡量专业知识,我们模型中的策展人关注内容及其引用关系,其中策展人分配使用个性化PageRank (PPR)算法,而奖励计算使用多任务同行预测机制。我们提出的CitedTCR连接了基于网络和基于令牌的推荐系统的文献,并有助于自主开发不断发展的高质量内容引用图。此外,我们通过实验验证了CitedTCR中用户和内容(节点)之间一对一对应关系的简化,验证了注册和管理的动机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ledger
Ledger Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
2.20
自引率
0.00%
发文量
2
审稿时长
40 weeks
期刊最新文献
Tokenized Carbon Credits Irrational Economic Action: Running a Bitcoin Lightning Node for Negative Profit Blockchains and Triple-Entry Accounting for B2B Business Models A Token Economics Explanation for the De-Pegging of the Algorithmic Stablecoin: Analysis of the Case of Terra Economics of Open-Source Solar Photovoltaic Powered Cryptocurrency Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1