A 3D Numerical Model for Turbidity Currents

G. Cannata, L. Barsi, M. Tamburrino
{"title":"A 3D Numerical Model for Turbidity Currents","authors":"G. Cannata, L. Barsi, M. Tamburrino","doi":"10.37394/232013.2020.15.1","DOIUrl":null,"url":null,"abstract":"A numerical model that solves two-phase flow motion equations to reproduce turbidity currents that occur in reservoirs, is proposed. Three formalizations of the two-phase flow motion equations are presented: the first one can be adopted for high concentration values; the second one is valid under the hypothesis of diluted concentrations; the third one is based on the assumption that the particles are in translational equilibrium with the fluid flow. The proposed numerical model solves the latter formalization of two-phase flow motion equations, in order to simulate turbidity currents. The motion equations are presented in an integral form in time-dependent curvilinear coordinates, with the vertical coordinate that varies in order to follow the free surface movements. The proposed numerical model is validated against experimental data and is applied to a practical engineering case study of a reservoir, in order to evaluate the possibility of the formation of turbidity currents.","PeriodicalId":39418,"journal":{"name":"WSEAS Transactions on Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232013.2020.15.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

Abstract

A numerical model that solves two-phase flow motion equations to reproduce turbidity currents that occur in reservoirs, is proposed. Three formalizations of the two-phase flow motion equations are presented: the first one can be adopted for high concentration values; the second one is valid under the hypothesis of diluted concentrations; the third one is based on the assumption that the particles are in translational equilibrium with the fluid flow. The proposed numerical model solves the latter formalization of two-phase flow motion equations, in order to simulate turbidity currents. The motion equations are presented in an integral form in time-dependent curvilinear coordinates, with the vertical coordinate that varies in order to follow the free surface movements. The proposed numerical model is validated against experimental data and is applied to a practical engineering case study of a reservoir, in order to evaluate the possibility of the formation of turbidity currents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
浊度流的三维数值模型
提出了一个求解两相流运动方程的数值模型,以重现水库中出现的浊流。给出了两相流运动方程的三种形式化:第一种形式化可用于高浓度值;第二种方法在稀释浓度假设下是有效的;第三种是基于粒子与流体流动处于平移平衡的假设。所提出的数值模型解决了两相流运动方程的后一种形式化,以模拟浊流。运动方程以积分形式在随时间变化的曲线坐标中表示,垂直坐标随自由表面运动而变化。通过实验数据验证了所提出的数值模型,并将其应用于油藏的实际工程案例研究,以评估浊流形成的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
WSEAS Transactions on Fluid Mechanics
WSEAS Transactions on Fluid Mechanics Engineering-Computational Mechanics
CiteScore
1.50
自引率
0.00%
发文量
20
期刊介绍: WSEAS Transactions on Fluid Mechanics publishes original research papers relating to the studying of fluids. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of this particular area. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with multiphase flow, boundary layer flow, material properties, wave modelling and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
期刊最新文献
Wind Velocity Effect on the Aerodynamic and Acoustic Behavior of a Vertical Axis Wind Turbine Aerodynamics Analysis Comparison between NACA 4412 and NREL S823 Airfoils Influence of Chemical and Radiation on an Unsteady MHD Oscillatory Flow using Artificial Neural Network (ANN) Non-Fourier Heat Flux Model for the Magnetohydrodynamic Casson Nanofluid Flow Past a Porous Stretching Sheet using the Akbari-Gangi Method Suspended Mooring Line Static Analysis using Internal XFlow Capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1